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Introduction

gerhard ernst and andreas hüttemann

1.1 Statistical mechanics and philosophy

Statistical mechanics attempts to explain the behaviour of macroscopic physical
systems (in particular their thermal behaviour) in terms of the mechanical properties
of their constituents. In order to achieve this aim it relies essentially on probabilistic
assumptions. Even though in general we do not know much about the detailed
behaviour of each degree of freedom (each particle), statistical physics allows us
to make very precise predictions about the behaviour of systems such as gases,
crystals, metals, plasmas, magnets as wholes.

The introduction of probabilistic concepts into physics by Maxwell, Boltzmann
and others was a significant step in various respects. First, it led to a completely
new branch of theoretical physics. Second, as Jan von Plato pointed out, the very
meaning of probabilistic concepts changed under the new applications. To give
an example: whereas before the development of statistical physics variation could
be conceived as the deviation from an ideal value this was no longer a tenable
interpretation in the context of statistical physics. Genuine variation had to be
accepted (von Plato, 2003: 621).

Furthermore, the introduction of probabilistic concepts triggered philosophical
speculations, in particular with respect to the question whether the atomic world
does indeed follow strict deterministic laws (cf. von Plato, 1994; Stöltzner, 1999).
For instance, in 1873 Maxwell gave a lecture entitled ‘Does the Progress of Physical
Science tend to give any advantage to the opinion of Necessity (or Determinism)
over that of the Contingency of Events and the Freedom of the Will?’ He wondered
whether ‘the promotion of natural knowledge may tend to remove the prejudice
in favour of determinism which seems to arise from assuming that the physical
science of the future is a mere magnified image of that of the past’ (quoted in
von Plato, 1994: 87). Other physicists in the field voiced similar views. Franz
Exner, an Austrian physicist, argued in his lectures on the physical foundations
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2 Gerhard Ernst and Andreas Hüttemann

of natural science that the concepts of causation and laws of nature have to be
revised in the light of the need to introduce probabilistic concepts into physics.
With respect to determinism he claims that deterministic laws obtain only in the
macro-world and that there is no reason to assume that determinism is true at the
level of atoms. It may very well be the case, he argues, that the most fundamental
laws of physics are probabilistic. (The lectures were written in and before the first
world war; Exner, 1922: lectures 86–95.) These views which arose in the context
of philosophical reflections on the nature of the new statistical mechanics may
well have contributed to the willingness with which some proponents of the newly
emerging quantum mechanics gave up determinism.

Be that as it may, philosophical reflection on statistical mechanics came almost to
an end with the advent of other new fundamental physical theories, such as quantum
mechanics and the theory of general relativity. For sixty years philosophers of
physics focused almost exclusively on the interpretation of quantum mechanics and
the philosophical implications of the theory of general relativity. It was only with
the publication of Lawrence Sklar’s Physics and Chance (1993) that the discussion
of philosophical and foundational problems of statistical mechanics became more
popular again among philosophers of physics. Sklar (1993: 6) surmised that the
neglect of statistical mechanics was partly due to the fact that the field itself is
in a certain disarray. Compared to the situation in quantum mechanics and the
theories of relativity there are not only different philosophical interpretations of
physical theories but also widely diverging approaches and schools within statistical
mechanics itself. It was Sklar’s aim to provide a survey and make some of these
approaches accessible and thus to stimulate further philosophical investigations. It
seems that by and large he succeeded. The last decade has seen the field flourishing.
There have been major philosophical monographs like David Albert’s Time and
Chance (2000) as well as a lot of other work – to a significant extent by the
contributors of this volume.1 There is even a recent volume entitled Contemporary
Debates in Philosophy of Science (by Christopher Hitchcock, 2004), in which
philosophical issues pertaining to statistical mechanics figure more prominently
than those of quantum mechanics or the theories of relativity.

The main philosophical and foundational questions that are currently discussed
concern the relation of statistical mechanics and thermodynamics. Thermody-
namics started as a theory of heat engines. It gradually developed into a rather
general theory that describes matter in all its phases and their thermal and magnetic
behaviour in particular. Thermodynamics makes virtually no assumptions about the
micro-structure of the systems it describes. But of course the systems described by
thermodynamics do have a micro-structure. Statistical mechanics was developed in

1 For a very helpful state of the art article see Uffink (2007).
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the hope to explain the thermodynamic macro-laws in terms of the behaviour of the
systems’ constituents. Surprisingly, this reductive enterprise turned out to be rather
difficult. Most foundational/philosophical issues are related in one way or another
to the question of the reduction of thermodynamics to statistical mechanics. In
particular, there are three focal issues:

(1) One law in thermodynamics exhibits a pertinent time-asymmetry (according to the
second law of thermodynamics, the entropy in a closed system never decreases in time),
whereas the fundamental laws of statistical mechanics fail to exhibit such an asymmetry.
So, where does the time-asymmetry come in? And how is the thermodynamic time-
asymmetry related to other ‘arrows of time’ in physics?

(2) Statistical mechanics is a probabilistic theory, while thermodynamics is not. So, how
is the concept of probability to be interpreted in order to be coherent and to make
thermodynamic behaviour intelligible?

(3) Thermodynamics allegedly is reducible to statistical mechanics. But how exactly, if
at all, does the reduction work? And what concept of reduction is here employed
anyway?

Part one of this collection of essays is concerned mainly with the first topic (see
Section 1.2), part two with the second (see Section 1.3), and part three with the
third (see Section 1.4).

1.2 The arrows of time

Time seems to have a direction. However, it is not so clear what this claim exactly
amounts to and whether a direction of time could be distinguished from processes
in time having a direction. Even though the fundamental dynamical laws in physics
do not have a temporal direction both in physics as well as in ordinary life we come
across various temporally directed phenomena (‘arrows of time’). There are several
such arrows in physics (see the chapter by Kiefer): We only observe certain sorts of
radiation, entropy never decreases and our universe expands. Similarly, causation
seems to have a temporal direction. Furthermore, we seem to know more about the
past than about the future. And counterfactual dependence seems to be temporally
directed as well: ‘If A had not occurred then C would not have occurred either’
seems to be – in general – a good candidate for a true proposition only if what is
described by A precedes what is described by C (see Horwich, 1987). The chapters
by Mathias Frisch, Craig Callender and Claus Kiefer are all concerned with the
arrows of time.

The contribution by Mathias Frisch deals with the question of how various of the
temporal asymmetries are related to one another. There is a long tradition accord-
ing to which the causal asymmetry is closely related to the temporal asymmetry
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embodied in the second law of thermodynamics. This view has recently been
defended by David Albert and by Barry Loewer, who argue that the causal asymme-
try can be grounded in those facts that explain the second law of thermodynamics.

Both accounts centrally involve the claim that it follows from Boltzmann’s
account of the thermodynamic asymmetry (the so-called past hypothesis, which
postulates a low-entropy constraint on the early universe) that possible macro-
evolutions are much more restricted toward the past than toward the future. The
statistical mechanical account, as Loewer puts it, results in a time-asymmetric ‘tree-
structure’ for possible macro-evolutions. Frisch argues that statistical mechanics
allows not only for branchings but also for the reconvergence and merging of
possible macro-histories. As a consequence he maintains that Albert’s and Loewer’s
accounts do not work in their present form because they fail to explain how our
strict concepts of causal influence and causal control emerge.

Craig Callender’s chapter argues that it is essential for answering the problem of
the direction of time to take gravity into account. More particularly, he deals with the
question whether the low-entropy constraint is plausible given what we know about
gravity. The past hypothesis, which is invoked to explain why entropy increases (or
rather: never decreases) seems to be prima facie patently false. According to current
cosmological theories the early universe is an almost homogeneous isotropic state of
approximately uniform temperature, i.e. a very high entropy state, not a low-entropy
state as postulated by the past hypothesis. The standard response to this objection
is that we forgot to include gravity. Gravity, it is said, saves the past hypothesis. So
now the essential question is whether the gravitational behaviour of the stars etc.
can plausibly be interpreted as the movement to an equilibrium state. Callender
argues that the inclusion of gravity into the Boltzmannian account of the direction
of time is highly non-trivial. After sketching some serious problems with gravity,
he develops a sketch of how one can obtain a never decreasing Boltzmann entropy
in self-gravitating systems described by certain types of gravitational kinetic
equations.

Claus Kiefer approaches the different arrows of time from the perspective of a
physicist. His aim is to explain how the various physical arrows can in principle be
understood on the basis of a fundamental theory of quantum gravity. After a brief
discussion of the time-directed processes in question, the physical framework of
a particular approach to quantum gravity, the canonical approach, is outlined. The
fundamental equation (the Wheeler–DeWitt equation) is devoid of any classical
time parameter, but involves a new type of dynamics with respect to an intrinsic
time. In simple models this intrinsic time is given by the ‘radius’ of the universe.
Standard time can be recovered in certain situations as an approximation. Kiefer
claims that given a natural boundary condition on the Wheeler–DeWitt equation,
an arrow of time follows automatically.
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1.3 Probability and chance

Probabilistic reasoning is essential for statistical mechanics and discussions of
the foundations of statistical mechanics often focus on how to justify particular
probabilistic assumptions. There is, however, a problem that is systematically
prior: What are these probabilities? Subjectivists argue that probabilities reflect
our ignorance of the true state of the system. Objectivists deny this and submit that
probabilities have to be objective, i.e. that they have to be chances.

It is now often assumed that the probabilities introduced into statistical mechan-
ics should not be given an epistemic or subjectivist reading. David Albert, for
instance, comments on the subjectivist approach: ‘Can anybody seriously think
that [our epistemic situation, A. H.] would somehow explain the fact that the
actual microscopic conditions of actual thermodynamic systems are statistically
distributed in the way that they are? Can anybody seriously think that it is somehow
necessary, that it is somehow a priori, that the particles that make up the material
world must arrange themselves in accord with what we know, with what we happen
to have looked into? Can anybody seriously think that our merely being ignorant of
the exact microconditions of thermodynamic systems plays some part in bringing
it about, in making it the case, that (say) milk dissolves in coffee? How could that
be?’ (Albert, 2000: 64). The chapters in the second part of this volume focus on
the interpretation of probabilities and related metaphysical issues.

Jacob Rosenthal and Roman Frigg discuss objectivist approaches to probability.
Usually two versions of this approach are considered, the frequency interpretation
of probability and the propensity interpretation. Both of these face serious chal-
lenges – as interpretations of probabilities in general (see Rosenthal’s chapter for a
brief review) as well as for physical reasons when applied to probabilistic reason-
ing in statistical mechanics (see Section 6.2 of Frigg’s chapter). Jacob Rosenthal
defends a third objectivist interpretation of probability, the natural-range concep-
tion of probability. It considers probabilities as deriving from ranges in suitably
structured initial state spaces. Roughly, the probability of an event is the proportion
of initial states that lead to this event in the space of all possible initial states,
provided that this proportion is approximately the same in any not too small inter-
val of the initial-state space. The range approach to probabilities is usually treated
as an explanation for the occurrence of probabilistic patterns, whereas Rosenthal
examines its prospects for an objective interpretation of probability, in the sense
of providing truth conditions for probability statements that do not depend on our
state of mind or information. The main objection to such a proposal is that it is cir-
cular, i.e. presupposes the concept of probability, because a measure on the initial
state has to be introduced. Rosenthal argues that this objection can be success-
fully met and that the range approach has better prospects to provide a satisfactory
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objective interpretation of probability statements than frequency or propensity
accounts.

Roman Frigg focuses on the question of how different approaches to statistical
mechanics introduce probabilities and what kind of interpretation of probabilities
has to be assumed. He confines himself to approaches that follow Boltzmann
in defining an entropy function SB(t) in terms of the micro-state of the system.
Different approaches in this tradition diverge in how they introduce probabilities
into the theory and in how they explain the tendency of SB(t) to increase. The most
fundamental distinction is between approaches that assign probabilities directly
to the system’s macro-states (‘macro-probabilities’), and approaches that assign
probabilities to the system’s micro-state being in particular subsets of the macro-
region corresponding to the system’s current macro-state (‘micro-probabilities’).
More particularly, Frigg discusses Boltzmann’s own proposal to assign probabilities
to the system’s macro-states and the view by Paul and Tatiana Ehrenfest that these
should be interpreted as time averages, presupposing the ergodicity of the system.
It is now well known that this approach faces serious difficulties. Frigg’s point is
that even if these were surmounted there would be a grave problem not so much
with the probabilistic assumptions as such but rather with the dynamical laws
that are supposed to bring about the increase in entropy. The micro-probabilistic
alternative discussed, has been proposed by David Albert (2000). Frigg discusses
this approach and Barry Loewer’s suggestion for understanding these probabilities
as Humean chances in David Lewis’s sense. Frigg reaches the same conclusion
as in the discussion of macro-probabilities. All that is needed to explain why
things happen is the initial condition and the dynamics. Frigg opts for an epistemic
interpretation of probabilities in statistical mechanics. Probabilities have no role to
play in explaining why a system behaves as it does. They are introduced for reasons
of epistemic limitations.

The chapter by Michael Esfeld deals with metaphysical issues. In particular, he is
concerned with the opposition between Humean metaphysics and the metaphysics
of powers. Esfeld argues that within the bounds of Humean metaphysics everything
is a matter of contingency. Consequently, there is no deep metaphysical difference
between a deterministic world and a world in which only probabilistic laws hold.
This position is contrasted with the foundations of probabilities according to the
metaphysics of powers, in particular with the view that traces probabilities back to
propensities. Esfeld discusses arguments for and against both positions. In the end
he opts for the metaphysics of powers, mainly for two reasons: (1) the metaphysics
of powers avoids certain troublesome commitments; (2) contrary to a widespread
belief, the metaphysics of powers is compatible with physics, and it is able to
provide a complete and coherent ontology that does justice to both physics and the
special sciences.
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1.4 Reduction

There are many meanings of the term ‘reduction’. The shared background for most
discussions in philosophy of science is Nagel’s account of the formal criteria of
reduction (Nagel, 1961: ch. 11). Nagel’s primary concern was whether an older
theory (the reduced theory) is reducible to its successor (the reducing theory).
Reduction was conceived of as a special case of deductive-nomological explanation.
Successful ‘Nagel reduction’ integrates the old theory into the successor theory and
provides a clear sense in which the successor theory is better than its predecessor.
Ironically, Nagel presented the relation of thermodynamics to statistical mechanics
as a paradigm case for a successful reduction in the sense he developed. In fact,
this reduction is a highly non-trivial affair (cf. Ernst, 2003).

It is helpful to distinguish various senses of reduction. First, there is diachronic
reduction. Diachronic reduction concerns the evolution of disciplines and their
theories. This is the aspect Nagel had in mind when he introduced his account.
This perspective can be contrasted with synchronic reduction. Synchronic reduc-
tion concerns the relation of two theories that pertain to the same realm. At least
two cases of synchronic reduction in this sense can be distinguished. First, the
two theories in question may be related as limiting cases. Robert Batterman has
developed this view in his The Devil in the Details (2002) and works with it in his
contribution (see below). Second, it may be the case that one theory describes the
behaviour of compound systems (in a certain terminology) and the other theory
describes the behaviour of the constituents of the systems (in a different termi-
nology). In these cases we want to know how the different theoretical accounts fit
together. It seems plausible that in this case reduction is required for reasons of
coherence. Interestingly, if it turns out to be difficult to bring about coherence it is
not necessarily the higher-level assumptions that are put into question. In the case
of thermodynamics and statistical mechanics it is assumptions about micro-states
that turned out to be most controversial.

The contribution by Ulises Moulines concerns diachronic reduction. Moulines
distinguishes four different types of diachronic structures in the evolution of scien-
tific disciplines: (a) the evolution of a theory; (b) the replacement of one theory by
another; (c) the embedding of one theory into another; (d) the (slow) crystallization
of a theory out of different previous elements. He argues that a typical example
of crystallization is provided by the gradual emergence of phenomenological ther-
modynamics in the middle of the nineteenth century. A major role in this process
was played by several writings of Rudolf Clausius. Two of them are analysed in
the present chapter: Über die bewegende Kraft der Wärme (1850) and Über eine
veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie (1854).
By employing some formal tools of the structuralist reconstruction methodology
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(in particular, the notions of model and theory-net), three different theories are
identified in Clausius’ papers, thereby showing how much they still owe to the
caloric theory, how much they contain germs of future developments of thermody-
namics (such as the notion of internal energy or the difference between reversible
and irreversible cycles), and finally how there are conceptual tensions in the inter-
relationships between Clausius’ own theories.

Robert Batterman considers the so-called reduction of thermodynamics to sta-
tistical mechanics from both historical and relatively contemporary points of view.
Today, most philosophers of physics doubt that the relation of the two theories can
be described as a reduction in the sense of Nagel. Batterman turns to J. Willard
Gibbs who can be seen as sharing the scepticism about the possibility of such a
philosophical reduction of thermodynamics to statistical mechanics. Gibbs’ account
is not only discussed for his caution in connecting thermodynamical concepts with
those from statistical mechanics. Batterman takes him to suggest that one should
look for how thermodynamic quantities emerge from statistical quantities when
certain limiting conditions are satisfied. The paper then develops the idea that
the limit of statistical mechanics, as the number of degrees of freedom goes to
infinity, should yield the continuum thermodynamic theory. Batterman sketches a
program for reductive relations that involves deep connections between results in
probability theory on limit theorems and the so-called real space renormalization
techniques that play such an essential role in understanding the universality of
critical phenomena. It turns out that this kind of (feasible) reduction yields only an
association of thermodynamic properties, such as temperature and entropy, and a
so-called universality class of statistical mechanical structures. This contrasts with
Nagel-reduction, which requires (according to the standard reading) a one-to-one
association of thermodynamic and statistical mechanical quantities.

Jos Uffink discusses the problem of explaining the emergence of irreversible
processes in classical statistical mechanics from the point of view of stochastic
dynamics – and thus the question of synchronic reduction in the second sense, i.e.
concerning the relation of the behaviour of compound systems to that of their con-
stituents. An influential approach to the foundations of classical non-equilibrium
statistical mechanics claims to obtain a satisfactory explanation of irreversible
behaviour by characterizing the evolution of macroscopic physical systems as a
Markov process, or more abstractly, in terms of a semigroup of non-invertible
evolution operators. The general formalism developed in this approach, sometimes
called ‘stochastic dynamics’, can in fact be obtained from a variety of physical moti-
vations, e.g. by assuming that the physical system interacts with an environment
(the ‘open systems’ or ‘interventionist’ approach) or that only a few macroscopic
variables from the detailed microscopic state of the state are relevant for its physical
description (‘coarse graining’). Uffink argues that, despite appearances, the usual
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assumptions of this approach remain fully time-reversal invariant, and hence do not
embody irreversible behaviour. It is argued that a proper account of irreversibility
should not focus on the Markov property but on a different definition of reversibility
for stochastic processes.
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Part I

The arrows of time





2

Does a low-entropy constraint prevent us from
influencing the past?

mathias frisch

2.1 Introduction

It is part of our common sense conception of the world that what happens now can
make a difference to the future but not to the past; events in the present, we believe,
can causally influence the occurrence of future events but not of past events. What
is the relation between this asymmetry and other physical asymmetries? Is the
causal asymmetry fundamental or can our asymmetric notion of cause be shown to
be reducible to some other physical asymmetry? There is a venerable tradition in
the foundations of physics and the philosophy of science according to which the
causal asymmetry is intimately related to the temporal asymmetry embodied in the
second law of thermodynamics. This view has recently been forcefully defended
by David Albert (2000) and by Barry Loewer (2007), who argue that the causal
asymmetry can ultimately be grounded in the very same facts that give rise to the
second law of thermodynamics, chiefly among them a low-entropy constraint on
the initial state of the universe.

In this chapter I will critically examine aspects of their accounts and will argue
that neither account is successful as developed so far.1 In Section 2.2 I will briefly
summarize the Boltzmannian account of the thermodynamic asymmetry, from
which Albert and Loewer aim to derive asymmetries of causal influence and control.
Both accounts centrally involve the claim that it follows from the Boltzmannian
account that possible macro-evolutions are much more restricted toward the past
than toward the future. The statistical mechanical account, as Loewer puts it, results
in a time-asymmetric ‘tree-structure’ for possible macro-evolutions. I will criticize
this claim in Section 2.3.

1 For discussions of how a third asymmetry – the asymmetry of radiation – may be related to the asymmetries of
thermodynamics and of causation, see Frisch (2000; 2005; 2006b).

13
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While there is a considerable amount of agreement between the two accounts,
Albert and Loewer emphasize different routes by which the thermodynamic asym-
metry is meant to ground our time-asymmetric notions of causal influence or
control. Albert, in the first instance, focuses on a purely physical asymmetry that
he takes to be exhibited by suitably small and localized macro-events of the kind
that figure in paradigmatic causal judgments (such as that the collision between
two billiard balls caused one ball to roll into the corner pocket). In Albert’s termi-
nology, such macro-events can provide us with causal handles on the future but not
on the past. Loewer’s primary focus, by contrast, is on human actions and a puta-
tive asymmetry characterizing decision counterfactuals, whose antecedents make
reference to possible decisions. In Sections 2.4 and 2.5 I will raise worries about
both of these routes of trying to connect up the statistical mechanical asymmetry
to the asymmetry of control or influence.

Albert and Loewer’s aim is to offer an account of how it is that we possess
a time-asymmetric concept of causal influence or control by showing that such
a concept tracks certain non-causal features of the world given by fundamental
physics. Common sense causal claims are by and large concerned with relatively
small, ‘human-sized’ macro events of the kind that could be the result of human
interventions. Arguably, then, any account of how we come to possess an asymmet-
ric concept of cause need only be able to reproduce the asymmetry as far as causal
claims within this domain are concerned.2 It is, however, part of our notion of
causal relations among ‘human-sized’ macro-events that the temporal asymmetry
of causation is strict in the sense that in all paradigmatic or standard circumstances
the relation of causation is future directed and that in such cases there is absolutely
no backward causation. We believe that our interventions can have an effect on
the future development of the world and we also believe that our interventions can
have absolutely no effect on the past. A successful entropy account would have
to be able to account for this feature of our concept. This does not mean that it
has to be a consequence of the account that there is no backward causal influence.
Since entropy accounts ultimately appeal to certain probabilistic relations that they
take to be derivable from statistical mechanics, they may have the consequence
that the causal asymmetry is not strict. Nevertheless, the account has to be able
to explain why we take the asymmetry to be strict.3 Thus, similar to derivations

2 Thus, Albert rightly argues that the fact that a universe in the shape of Bozo the clown would have to have had
a very different past from ours would not undermine his entropy-account of causation (see Albert 2000: 130,
fn. 21). Even if Albert’s account had the consequence that there is backward causal dependence in this case,
this will pose no problem for his account, since this is not the kind of case that could have played a role in our
acquisition of causal concepts.

3 I think it may even be compatible with our common sense notion of causation, that there could be arcane-
physical circumstances in which there is backward causation. The point I am making here is that we take the
asymmetry to be strict as far as common sense, ‘billiard ball-like’ circumstances are concerned.
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of the second law from statistical consideration it would have to be shown that in
paradigmatically causal contexts exceptions to the asymmetry are extremely rare
and improbable. It would be a problem for an entropy account, if it implied that
there will be widespread backward causal influence in the kind of circumstances
that we take to be paradigmatically forward causal.

2.2 The micro-statistical account

According to the Boltzmannian account defended in Albert (2000), the thermody-
namic asymmetry that the entropy of a closed macroscopic system never decreases
can be explained by appealing to a time-symmetric micro-dynamics and an asym-
metric constraint on initial conditions. If we assume an equiprobability distribution
of micro-states compatible with a given macro-state of non-maximal entropy, then
it can be made plausible that, intuitively, most micro-states will evolve into states
corresponding to macro-states of higher entropy. However, if the micro-dynamics
governing the system is time-symmetric, then the same kind of considerations
also appear to show that, with overwhelming probability, the system evolved from
a state of higher entropy. This undesirable retrodiction, which is at the core of
the reversibility objection, can be blocked, if we conditionalize the distribution of
micro-states not on the present macro-state but on a low-entropy initial state of the
system. Since the reversibility objection can be raised for any time in the past as
well, Albert and others argue that we are ultimately led to postulate an extremely
low-entropy state at or near the beginning of the universe. Albert calls this postulate
‘the past hypothesis’ (PH).

Positing an equiprobability distribution at some initial time, however, seems to
lead to the following problem. If we postulate a uniform probability distribution
over the initial state of a system, then the distribution will not be uniform over
micro-states compatible with the actual macro-state at later times. If later macro-
states have higher entropy, they will correspond to regions of phase space that
are vastly larger than the region corresponding to the low-entropy initial state.
But, according to Liouville’s theorem, regions of phase space evolve into regions
of equal size. Thus, positing an equiprobability distribution at the initial time
precludes that the distribution is uniform over macro-states at later times and,
hence, might seem to preclude us from bringing to bear the very considerations
that seemed to ensure that entropy is overwhelmingly likely to increase in the first
place.

This problem can be solved, if we assume that the phase space region corre-
sponding to the initial macro-state dynamically evolves into a highly fibrillated
region such that the micro-states that have evolved from the initial macro-state
eventually are homogeneously distributed over all measurable subregions of the
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system’s available phase space. A formal condition that ensures that this assump-
tion is the condition that a system is mixing (see, e.g., Uffink, 2006). A dynamical
system is a tuple 〈�, A, µ, T 〉, where � is the system’s phase space, A is the set
of measurable subsets of �, µ is a probability measure, and T is a one parameter
group of transformations Tt that represents the evolution operators. A dynamical
system is mixing, just in case, for all A, B ∈ A

limt→∞ µ(TtA ∩ B) = µ(A)µ(B)

For such a system, the micro-state at t will with overwhelming probability be
‘typical’ of the micro-states compatible with the macro-state at t, in the sense
required for the Boltzmannian account.

Thus, the assumptions of the statistical mechanical account (SM) from which
the thermodynamic asymmetry is derived are the following:

(i) time-symmetric, deterministic dynamical micro-laws;
(ii) the past hypothesis PH, which characterizes the initial macro-state of the universe as

a low-entropy condition satisfying certain further symmetry conditions;
(iii) a probability postulate PROB, which postulates a uniform probability distribution

over the physically possible initial micro-states of the universe, compatible with the
past hypothesis PH;

(iv) an assumption of mixing or dynamic instability of possible micro-evolutions.

This account of the entropy-asymmetry has been challenged (e.g. by Winsberg,
2004; Earman, 2006), but I do not want to discuss these criticisms here. In what
follows I will assume that the account can successfully explain the thermodynamic
asymmetry and ask whether or not it can be extended to explain an asymmetry of
influence as well.

2.3 Trees or webs

Immediately after his own summary of how the micro-statistical account appealing
to PH and PROB accounts for the entropy asymmetry, Loewer presents the follow-
ing figure (Fig. 2.1), which, he says, ‘is a depiction of possible evolutions of micro-
and macro-states that should provide an idea of how all this goes’ (Loewer, 2007:
300).

In this figure thin lines represent possible micro-histories of the universe
and thick cylinders represent possible macro-histories. Possible macro-histories,
Loewer claims, exhibit a tree structure: even though the evolution of micro-
histories is assumed to be deterministic, the evolution of macro-histories is future-
indeterministic in that more than one future macro-history will in general be com-
patible with the macro-state of the world at a time. Indeed, there are different
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Actual micro history 

Actual macro history 

Possible initial conditions  

Figure 2.1.



18 Mathias Frisch

possible macro-futures that get assigned relatively high probabilities conditional on
the present macro-state. This contrasts with the probabilities assigned to different
past evolutions:

From a typical macro state in the middle of the actual macro history there will be branching
in both temporal directions but there will be much more branching where the branches have
substantial probability in the direction away from the time of the PH than back towards it.
The overall structure is due to the fact that the macro state at t (in the middle) must end up
in the direction of the boundary condition at which PH obtains (the direction we call ‘the
past’) satisfying PH.

(Loewer, 2007: 302)

Loewer reiterates the same point further down:

[PH and PROB] determine an objective probability distribution over all nomologically
possible micro histories (and a fortiori over all macro histories and all macro propositions).
Even though the underlying micro dynamics is deterministic macro histories form a tree
structure branching towards the future (away from the time at which PH holds).

(Loewer, 2007: 307)

That is, the objective probability distribution determined by PH and PROB forms a
branching tree structure – a tree structure that is ‘due to the fact’ that PH provides
a constraint on possible evolutions.

We can express this structure somewhat more formally by introducing the notion
of quasi-determinism:

(QD) A system is quasi-deterministic at t relative to some time t ′ and some set of mutually
exclusive macro-states M, exactly if there is a state Mi in M such that P(Mi(t ′)/S(t)) is close
to 1, where S is the state of the system at t.

The probabilities here (and throughout this chapter) are those induced by the statis-
tical mechanical probability distribution and conditionalization on the dynamical
micro-laws and the past hypothesis PH is left implicit. The claim that the uni-
verse exhibits an asymmetric tree-structure is equivalent to the conjunction of the
following two claims:4

(1) the world is not quasi-future deterministic;
(2) the world is quasi-past-deterministic at all times t with respect to all times t ′, t ′ < t,

and all M.

4 Since Loewer only claims that there is ‘much more branching’ toward the future, one might think that conditions
(1) and (2) are stronger than what Loewer would want to endorse. We do not need to settle this question in
general here. The important issue will be whether there is widespread branching toward the past involving the
kinds of event that feature in paradigmatically causal judgments.
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I have shown in Frisch (2006a) that from a formalization of the tree-structure
similar to QD one can indeed derive the asymmetry of decision counterfactuals
that is at the core of Loewer’s account. I have also suggested, however, that the
claim that the SM account implies a tree-structure of possible macro-evolutions is
problematic and here I want to develop this latter claim in more detail.

Since macro-states closer to equilibrium occupy vastly larger regions of phase
space than states further away from equilibrium, it follows from Liouville’s the-
orem that there will be many possible different non-equilibrium states far from
equilibrium that evolve into the same state closer to equilibrium in the future. This
suggests that there may be many more changes to the micro-state of a system close
to equilibrium associated with different macro-pasts further away from equilib-
rium than there are changes to the micro-state of a system far from equilibrium
associated with different macro-futures closer to equilibrium. Merely comparing
the phase-space volumes associated with macro-states at different times suggests
that possible macro-evolutions may exhibit an upside-down tree structure.5

We can distinguish two worries here: first, focusing on the future ‘end’ of the
tree-structure, is it indeed a consequence of the SM account that there will be no
significant reconvergence of branches, and that there are no times with respect to
which thermodynamic systems are quasi-deterministic? And, second, focusing on
the past ‘end’, is it a consequence of the account that the past is quasi-deterministic
at all times with respect to the initial time tPH at which PH holds?

That future evolutions are not quasi-deterministic might seem to follow from the
assumption of mixing. If a system is mixing the conditional probability P(M(t)/M0)
of a macro-state M(t) given the initial state M0 depends only on the phase-space
volume associated with M(t) and is independent of M0. Yet the mixing assumption
alone does not imply the failure of quasi-determinism for all future times. If there
is a single equilibrium macro-state Me that takes up the overwhelming majority of
the phase space region available to a system, then P(Me) can be close to one and
the system is quasi-future-deterministic with respect to all times after which the
system reaches equilibrium.

This point holds for thermodynamic systems of all sizes – to the extent that the
Boltzmannian account applies to these systems – ranging from small macroscopic
quasi-isolated systems to the universe as a whole. Consider, for example, the
paradigmatic thermodynamic system – a body of gas that is initially confined to

5 Since Loewer represents possible macro-evolutions in his diagram of a possible tree structure (2.1) by cylinders
of constant diameter, the diameter cannot be taken to represent phase space volumes. If we wanted to include
a representation of the phase space volumes associated with macro-states in the diagram, possible macro-
evolutions would have to be represented by cones of dramatically increasing widths towards the future. As a
rhetorical device, Loewer’s diagram lends far more plausibility to the thesis of macro-branching toward the
future, than a picture of cones that branch at the same time as they dramatically increase in width. (When you
try to draw this, you will quickly run out of space into which branching could occur.)
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the right half of a container and, after a partition is removed, spreads out until
it is distributed evenly throughout the container. Since most of the phase space
accessible to the gas is associated with its equilibrium state, the SM account allows
us to predict that the gas will be overwhelmingly likely to end up in that state – the
gas evolves quasi-deterministically with respect to the final equilibrium state. At
the other extreme, current cosmology suggests that the universe as a whole, too,
may be quasi-deterministic with respect to its future equilibrium state, in which
ionized stable particles, i.e. protons, neutrons and electrons, are distributed evenly
throughout the cosmos at a density approaching zero (see e.g. Baez, 2007).

While Loewer is obviously right in suggesting that there are many systems that
are open to the future – there clearly is widespread macro-branching toward the
future – thermodynamic considerations imply that there also is widespread recon-
vergence of possible macro-histories. Thus, at the cosmological level, even though
the initial state of the universe might not determine the large-scale distribution of
matter before elementary particles begin to ‘boil off’ in the final evolution towards
equilibrium, different cosmological macro-histories will converge toward the final
equilibrium state. Similarly, there is convergence at the level of ‘human-sized’
macro-systems: no matter which part of the container a body of gas occupies
initially, after the partition is removed the gas will spread until it is uniformly
distributed throughout the container.

As a simple case exhibiting both branching and reconvergence consider the
example Albert uses to motivate postulating a past hypothesis and the existence
of macro-branching (Albert, 2000: 82ff). Albert imagines a system consisting of
ice cubes that drop into glasses of water after sliding down a device similar to a
Galton board. The same low-entropy initial state, with the ice cubes collected at the
top, will indeterministically evolve into different macro-states given by different
distributions of ice cubes in the glasses at the bottom of the board. Yet if we
imagine that the ice cubes have several macroscopically distinct shapes of the same
volumes, then there will be macroscopically distinct distributions of ice cubes in
the glasses that will eventually evolve into the same macro-states once the ice is
fully melted. And if we further assume that at the end of our experiment all glasses
of water are emptied into a single bucket, all possible macro-histories that diverge
after the ice is released at the top of the Galton board will reconverge – no matter
what the shapes or volumes of the ice cubes are and no matter what path they
take down the board. That is, the final state of the system when all the water is
collected in a bucket is not quasi-deterministic with respect to past times when
the ice cubes were distributed among the different glasses, even if we impose as
additional constraint that all macro-histories are constrained to have originated in
the state where the ice cubes were collected in a container at the top of the Galton
board.
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Now, there are discussions in the literature on counterfactuals that suggest that
there is a crucial consideration that has been missing from our examination so far –
the role of records or traces of the past. These discussions often invoke Kit Fine’s
famous example of Nixon’s pushing the button that leads to a nuclear holocaust.
It is often suggested that the many traces Nixon’s action (or inaction) leave in the
world play an important role in making convergence of ‘button-pushing worlds’
with ‘non-button-pushing worlds’ difficult. In the case of the ice cubes sliding
down the Galton board drops of water on the board or my memories of observing
a particular ice cube slide down a certain path might constitute such traces.

But it is easy to exaggerate how frequent and persistent macro-traces are. In fact,
it is precisely the thermodynamic behaviour of systems that often either prevents
the formation of macro-traces or leads to the disappearance of such traces. What-
ever else the connection between PH and the existence of records is, one central
role played by the thermodynamic arrow is as a destroyer of macro-records and
macro-traces. Thus, any drops of water left on the Galton board will eventually
evaporate; and since what path a particular ice cube took has not the same momen-
tous consequences for the fate of the Earth as Nixon’s decision whether to push
the button, I will soon forget any details of what I observed (and may well forget
altogether that I ever conducted the experiment). Moreover, there will not be any
other macroscopic ‘traces’ of the experiment. While light waves will be reflected
differently by the ice cubes depending on their path, due to the multiple scatterings
of photons off the laboratory walls and the air molecules, these differences will
leave no macroscopic traces by the next day. We might even imagine that there are
different lamps that light up depending on what path an ice cube slides down. By
the next day – and in fact much sooner – there will be no macroscopic traces of a
particular lamp having been on when ice cube 17 slid down the board. Due to the
thermodynamic behaviour of the walls of the laboratory and of the atmosphere, the
macro-state of the world tomorrow will be independent of what the outcome of my
experiment is today.

Examples similar to this one can be multiplied indefinitely. While there indu-
bitably are many systems which for some finite time do not evolve quasi-
deterministically, there are also many cases like the ones I just described – cases
for which differences even in the current macro-state will eventually ‘wash out’,
for which the system’s macro-history throughout some period T will leave no
macroscopic traces in the future, and for which different macro-states will evolve
quasi-deterministically into one and the same future macro-state.

I have argued that the assumption of mixing is not enough to ensure that a
system is future quasi-indeterministic with respect to its equilibrium state and that
it is a consequence of the thermodynamic behaviour of systems that there will
be reconvergence of possible macro-histories even for systems that do not evolve
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quasi-deterministically during some time-interval T. Can mixing at least ensure
that the evolution toward equilibrium is not deterministic? It is far from clear that
the answer is ‘yes’. First, all we can conclude from the assumption that a system is
mixing is that after a sufficiently long time the probability of finding a system in
a given macro-state is proportional to the phase-space volume associated with that
state. That is, we can conclude from the fact that a system is mixing that it will end
up in an equilibrium state, but we cannot draw any inferences at all about how it
will get there.

Second, as Earman (2006) has argued, if we were able to show that all
thermodynamic macroscopic systems had different possible macro-futures that
receive substantial probability, we might be showing too much, as it were,
and our theory would be empirically inadequate. While there clearly are sys-
tems that are dynamically unstable on the macro-level, there also are many
systems that do not exhibit any macroscopic instability and are quasi-future-
deterministic. Indeed, many paradigm cases of causal or time-asymmetric coun-
terfactual judgments concern such quasi-deterministic macro-systems. Not only
might we want to endorse the claim that had the proverbial butterfly not
flapped its wings there would not have been a storm – an example of a causal
counterfactual concerning a dynamically unstable system – but we might also want
to say that had I not stepped on the brake, my car would not have come to a halt at
the red light – an example of a causal counterfactual concerning, hopefully, a quasi-
deterministic system. One might worry, then, how we can recover the apparently
deterministic macro-evolutions of many systems from the assumption of dynamic
instability on the micro-level.

The picture that has emerged is not one of an asymmetrically branching tree
structure, but rather that of a web of possible macro-histories that branch and
reconverge. Whether at its future end the web of possible macro-histories for the
universe converges into a single strand, is a question for cosmology to decide.
But the subweb characterizing the history of Earth and many of the even lower-
dimensional ‘subwebs’ characterizing human-scale subsystems on Earth involve a
large amount of convergence of strands, as well as branchings. Moreover, there are
many small macro-systems that over (humanly) significant stretches of time evolve
quasi-deterministically and do not exhibit any branching at all.

So far I have focused on Loewer’s claim that there is branching toward the
future without widespread reconvergence. I now want to turn to his claim that it
follows from the SM-account that the macro-evolution of the universe is quasi-
past-deterministic with respect to an initial time tPH. Above I expressed the past
hypothesis as the constraint that the initial macro-state of the universe was a low-
entropy state satisfying certain further symmetry conditions. But if this indeed is
what the past hypothesis says, an additional problem arises for Loewer’s claim that
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the past is closed: It does not seem to follow from the constraint that micro-histories
originated in a very low-entropy state that the macro-past is the unique actual low-
entropy past. That is, counterfactual micro-histories may have originated in low-
entropy macro-states distinct from the actual low-entropy past. Consider once more
a system consisting of a gas in a box and assume that the gas could have started out
in one of two possible low-entropy initial states, confined either to the right or the
left half of the container. Let us assume that in the actual world the gas started out in
the left half of the container and then spread out until it reached equilibrium, filling
the entire container. Then, according to the reversibility objection, most changes
to the final micro-state will be associated with a high-entropy past, since most
micro-states compatible with the final equilibrium state will have evolved from
equilibrium initial states. What if we assume a ‘past-hypothesis’ and constrain
changes to the final micro-state to those that evolved from a low-entropy initial
state? The phase space regions corresponding to the two initial states – the gas
confined to the right or to the left half of the box – will evolve into highly fibrillated
regions. If we assume that the system is mixing, each coarse-grained ‘box’ of phase
space will have the same proportion of points that have evolved from the two initial
regions. That is, intuitively, while the overwhelming majority of points in each box
of phase space lie on trajectories that have evolved from high-entropy pasts, the
same number of points in each box lies on trajectories that originated in the two low-
entropy states. Given the final macro-state, the system is as likely to have evolved
from the non-actual low-entropy past where the gas would have been confined to
the right half of the container as from the actual past and adding a low-entropy
constraint in the past does nothing to privilege the actual low-entropy past.

If PH merely restricts macro-histories to have originated in some (suitably
symmetric) low-entropy state, then Loewer’s conclusion that the universe is quasi-
deterministic with respect to tPH seems unwarranted. But Loewer himself charac-
terizes PH differently: He says that PH is ‘a statement specifying the macro state
of the universe at one boundary’ (Loewer, 2007: 300, my italics). That is, accord-
ing to Loewer’s reading, the past-hypothesis restricts possible micro-histories to
have originated in the actual low-entropy past state and this restriction trivially
ensures that all possible macro-histories originated in one and the same macro-
state. But can we assume the actual initial macro-state as constraint, without beg-
ging the question, in an account that is meant to derive a temporal asymmetry of
counterfactuals?

Loewer’s explicit aim is to provide a broadly Lewisian account of a counter-
factual asymmetry and he contrasts his and Lewis’s strategy, on the one hand,
with Jonathan Bennett’s, on the other, who does not offer an explanation of the
asymmetry but simply assumes that counterfactuals are evaluated by keeping the
past fixed. Loewer says:
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I think that Bennett’s account does a pretty good job of characterizing a conditional that
matches core uses of the counterfactuals that interest us. [ . . . ] However, Bennett’s pro-
cedure for evaluating counterfactuals assumes the distinction between past and future
(since forks are to the future) and so it does not provide a scientific explanation of time’s
arrows.

(Loewer, 2007: 309–310)

Thus, in order to provide a scientific explanation of the asymmetry, we cannot
merely assume the asymmetry by holding the past fixed and allowing only the
future to vary, but have to derive this asymmetry from the global distribution of
matters of fact in the actual world in conjunction with the laws.

One might worry, then, that by the very fact that Loewer assumes PH as a
time-asymmetric constraint he, like Bennett, is putting in the asymmetry by hand.
Both Bennett and Loewer, it seems, stipulate a time-asymmetric constraint on
how past states of the world may vary, and from this derive that counterfactuals
are time-asymmetric. To be sure, Bennett’s constraint goes beyond Loewer’s – he
stipulates that we hold fixed the entire macro-history in one temporal direction,
while Loewer only fixes the macro-state at the past temporal end – but Loewer’s
constraint may strike one as similarly question-begging, if our goal is to provide
a scientific explanation of a temporal asymmetry of counterfactuals. The only
‘scientific contribution’ to Loewer’s account might be that the dynamical laws
need to ensure that counterfactual past micro-evolutions converge quickly enough
with the actual macro-past.

Loewer’s reply to this worry is that the initial macro-state of the universe plays
a special role in our overall scientific conception of the world. Loewer himself
tries to capture this role by proposing a broadly Lewisian account of laws and
suggesting that the actual initial macro-state is part of the Lewisian best system.
Yet he apparently also believes that the special scientific status of the initial macro-
state can be motivated independently of Lewis’s account of laws. What, then, is
the special role played by the PH and does that role provide us with good reasons
for assuming the actual initial macro-state (rather than just a low-entropy state) as
constraint on possible macro-histories?

First, in the Boltzmannian account, PH plays a central role in deriving the ther-
modynamic asymmetry. Thus, Loewer supports affording PH a special role by
saying that it ‘underwrite[s] many of the asymmetric generalizations of the special
sciences especially those in thermodynamics and these generalizations are consid-
ered to be laws’ (Loewer, 2007: 304). But in order to derive the thermodynamic
‘laws’ it is sufficient to assume that the universe began its life in a low-entropy state
(in addition to PROB). Thus, the foundations of thermodynamics do not provide
us with a reason to accept Loewer’s version of PH as constraint instead of the one
I proposed.



Entropy and our inability to influence the past 25

Second, both Albert and Loewer point to the explanatory role the actual macro-
state of the early universe plays in current cosmology. Thus, they maintain that
any macro-state that results from a small hypothetical alteration to the actual
present macro-state is constrained to have evolved from the actual initial macro-
state that cosmology will eventually present to us. But the plausibility of this claim
relies on an equivocation on the notion of macro-state. A macro-state is associated
with a coarse graining over the phase space of a system and in different contexts
different coarse grainings are appropriate. In the case of the kind of counterfactuals
associated with paradigmatically causal claims, the right level of description is one
referring to medium-sized, ‘human-scale’ objects, whose states are characterized
in units such as 1m or 1kg. In the context of astronomy or cosmology we are
interested in the distribution of stars and galaxies and demanding that macro-
states ought be specified to a precision of the location of medium-sized objects
would be absurd. Appropriate units in the latter context are, for example, the
astronomical unit 1 AU = 1.5 × 1011 m or the solar mass 1 M = 1.9 × 1030 kg. Thus,
even if we grant that a specification of the actual initial macro-state of the universe
provides a scientifically legitimate and non-question-begging constraint on possible
macro-evolutions, the constraint can only be a specification of the cosmological,
coarse-grained macro-state. Any specification of the initial macro-state more fine
grained than that does not play a scientifically explanatory role.6 But just as there
are many micro-states compatible with a given fine-grained macro-state, there are
many fine-grained macro-states (specifying, for example, the exact distribution of
small rocks on a planet’s surface) compatible with a more coarse-grained macro-
state.

One might think that the specific nature of the macro-state of the early universe
provides a reply to this worry. According to current cosmology, matter was dis-
tributed smoothly shortly after the big bang. (A smooth matter distribution, it is
often argued, represents a state of extremely low gravitational entropy, and hence, as
matter clumped to form stars and galaxies, the gravitational entropy of the universe
increased.) Thus, one might think that there is just a single initial macro-state tout
court – that is, even just a single fine-grained macro-state – that satisfies the condi-
tions revealed to us by cosmology. While there can be many different macro-states
that exhibit the same amount of gravitational clumping, there seems to be only
a single macro-state characterized by a completely smooth matter distribution –
a state that is smooth at all levels of coarse graining.

But this reply fails for two reasons. First, its premise is false. The macro-state
of the early universe was not completely smooth, even on a cosmological level

6 Within Loewer’s preferred Lewisian account of laws this point can be made as follows: including a description
of the Universe’s fine-grained, human-scale initial macro-state in our deductive system will vastly complicate
the system without providing us much (if any) gain in informativeness.
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and – fortunately for contemporary cosmology – exhibited density fluctuations
large enough to function as seeds for the formation of stars and galaxies.7 Second,
the inference from a distribution that is smooth at one level of coarse graining
to one that is smooth at all levels is not sound. It is part of the Boltzmannian
account that the micro-state of the early universe was one that is ‘typical’ given
the known macroscopic constraints. This means that, if the association between a
smooth matter distribution and low gravitational entropy is correct, the SM account
implies that the early universe is overwhelmingly probable to have exhibited as
much gravitational clumping as is compatible with our cosmological evidence.

Thus, neither statistical physics nor cosmology provides us with scientific rea-
sons to take the actual fine-grained or human-scale macro-state as constraint on
possible fine-grained macro-evolutions. The Boltzmannian account requires as
premise only that the universe began its life in a state of extremely low entropy
and cosmology restricts that state to one that is characterized by an approximately
smooth matter distribution, but with density fluctuations large enough to be com-
patible with many different fine-grained macro-states.

2.4 Causal handles

In the previous section I argued that it is a consequence of the thermodynamic
arrow that there will be convergence among different possible macro-evolutions
and that there will be many cases where small differences in the macro-state of a
system at one time leave no macro-traces in the system’s future. In this section and
the next I will show that this result leads to problems both for Albert’s account of
causal handles and for Loewer’s account of decision counterfactuals.

Albert argues that it is a consequence of the Boltzmannian account that the
present contains multiple causal handles on the future but (almost) no causal
handles on the past. If we constrain the remote past of any physical system, he
maintains, then only very few and special alterations to the present are associated
with a different recent past, while many such alterations may lead to different
futures. To illustrate this point Albert asks us to consider a collection of idealized
billiard balls on a frictionless plane such that ball 5 is currently stationary with the
additional constraint that ball 5 was moving 10 seconds ago. Given this additional
constraint, the fact that ball 5 has been involved in a collision in the past 10 seconds
is nomically determined by facts about the present state of ball 5 alone. That is,
alterations to the present state of the balls not involving changes in the state of
ball 5 cannot change the fact that ball 5 was involved in a collision during the last

7 The density fluctuations are of the order of 1 part in 100 000. By comparison, differences in mass distribution
of interest to us are of the order of 10−30 times the mass of the sun.
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10 seconds. Yet there are many changes to the state of the balls not involving ball 5
that will result in a different future evolution of ball 5. From this Albert concludes
that there are a far wider variety of ‘what we might call causal handles on the future
of the ball in question here, under these circumstances, than there are on its past’
(Albert, 2000: 128). In this example the constraint that ball 5 was moving is meant
to play the role of a ‘past-hypothesis’ and the current state of ball 5 functions as a
record of the past collision. More generally, then, Albert claims that if we postulate
PH as constraint on all possible macro-evolutions, then this imposes almost no
additional restriction on possible future macro-evolutions, while it restricts non-
actual present macro-states that are the result of small macro-changes to the actual
present state to have evolved from the actual macro-past – that is, it follows from
imposing PH as constraint on all possible macro-histories that there are many more
causal handles on the future than on the past.

In Albert’s example the current state of ball 5 together with the past constraint
nomologically determine that ball 5 was involved in a collision. In the general case,
however, PH in conjunction with certain local facts about the current macro-state
assigns probabilities strictly less than one to the occurrence of past events. Many
records or traces of the past do not determine the occurrence of the events of which
they are records but only raise the probabilities of their occurrence. Thus, the
general definition of a causal handle is as follows: A macro-event C(t) is a causal
handle on an event E(t ′), just in case the occurrence of C (significantly) affects the
probability of E. That is, C(t) is a causal handle on E(t ′) exactly if P(E/C&M(t))
	= P(E/M). M(t) is the actual macro-state at t outside of the region where C occurs
and contains any putative records of E at t. On Albert’s proposal, we evaluate the
results of small hypothetical changes to the present by keeping the present macro-
state fixed except for the small change and then determine how this counterfactual
macro-state evolves in accord with the constraint given by the SM account – with
one important qualification: Albert assumes that, in addition to any macro-records
of an event, we also hold fixed any putative memories we might have of that event,
even though memories might be physically realized by micro-states.

Albert’s thesis that there are (almost) no causal handles on the past is tantamount
to a screening-off condition. C(t) is not a causal handle on some past event E just
in case the rest of the macro-state at t screens off E from C – that is, P(E/C&M(t))
= P(E/M). But for events E that leave at most a small number of traces in the
present, this condition can easily fail. Take an event E(t ′) that has only two distinct
macro-traces C1 and C2 at some later time t. C1 and C2, intuitively, are both effects
of E. Thus, while E as the common cause of C1 and C2 might screen off C1 from
C2, it will not in general be the case that Albert’s condition is satisfied and that one
effect screens off the cause from the other effect. Indeed, the presence (or absence)
of additional traces of an event – that is of additional evidence for the event’s
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occurrence – can radically alter the probability of that event. Albert’s Galton board
can again serve as an example. That a particular ice cube landed in the second
glass from the left, say, constitutes a trace of it having slid down to the left of the
first pin. (For a board with n rows of pins where the probability at each pin of the
ice cube sliding down on one side is equal to 1/2, this probability is P(left/second
glass to left) = 1 − 1/n.) Now let us imagine that the ice cube can dislodge a little
ball as it slides down the board and that where the ball ends up also functions as a
probabilistic record of the ice cube’s path down the board. It is then easy to set up
the probabilities in such a way that both the little ball’s present position and the ice
cube’s landing in the second glass come out as causal handles on the path of the
ice cube past the first pin. That is, it is easy to set things up such that (keeping the
present condition of the ice cube in the glass fixed) there can be many alterations
in the present condition of the little ball that would alter the probabilities about
whether or not the ice cube slid down to the left of the first pin.8

Again, there is nothing unusual about this example. There are many cases where
additional evidence affects the probabilities of past events, and hence, according to
Albert’s account, would classify as causal handle on the past. It seems to me that to
the extent that Albert’s thesis may appear intuitively plausible, this rests on at least
one of the following two assumptions. First, Albert’s thesis is true if we demand that
a trace (together with the past-hypothesis) nomologically determines the event’s
occurrence. But while this assumption might hold in the idealized billiard ball
case Albert considers, it clearly is not true in general. Secondly, the thesis would
follow, if we assumed that each event leaves sufficiently many and varied traces
that each trace taken individually only marginally affects the probability of the
event’s occurrence. But as I argued in the previous section, it is a consequence
of the thermodynamic arrow that this assumption is often false. There are many
mundane (and paradigmatically causally related) events that leave no or only very
few traces in the future.9

2.5 Decision counterfactuals

By contrast with Albert’s account, Loewer’s account of an asymmetry of con-
trol focuses primarily not on a purely physical asymmetry but on an asymmetry
involving agents. Loewer argues that the SM account underwrites an asymmetry of
decision counterfactuals. A decision counterfactual is a probabilistic counterfac-
tual of the form ‘If at t I were to decide D, then the probability of B would be P’,

8 And this is meant as an explicit contrast with what Albert says about the billiard ball case on the top of page
127 in his book.

9 I critically examine several other aspects of Albert’s account of the causal asymmetry in Frisch (2007).
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which is true exactly if P(B/M(t)&D(t)) = p. M(t) is the complete macro-state at t
and the decision D(t) is an event ‘smaller than a macro-event but with positive prob-
ability’ (Loewer, 2007: 316). A property of decision events that is attractive from
Loewer’s perspective is that small differences in a decision state can get magnified
into large macroscopic differences in the world and he maintains that this feature of
‘decision conditionals [is] temporally asymmetric’: ‘Alternative decisions that can
be made at time t typically can make a big difference to the probabilities of events
after t [ . . . ] but make no difference to the probabilities of macro events prior to t’
(Loewer, 2007: 317).

Trying to capture the idea that different decisions are ‘open’ to an agent at a time,
Loewer assumes that decisions are ‘indeterministic relative to the macro state of the
brain and environment prior to, and at the moment of making the decision’ (Loewer,
2007: 317). From this assumption, it seems, there is an extremely quick argument
for the asymmetry of decision counterfactuals. If the assumption is understood not
merely as denying determinism but as asserting that decisions are probabilistically
independent of the macro-state prior to t, it directly follows that differences in
decisions ‘make no difference to the probabilities of macro-events prior to t’.
But this argument for the asymmetry of decision counterfactuals does not rely on
the SM account at all and seems question-begging – the asymmetry of decision
counterfactuals is simply built into our account of what a decision is. If we want
to avoid begging the question, we need to treat Loewer’s decision counterfactuals
analogous to Albert’s causal handles: in evaluating the truth of counterfactual we
hold the actual present macro-state and, in addition, our present memories fixed,
posit an alternative decision-event compatible with the state we keep fixed and then
let the conditional probabilities of both future and past macro-events be those given
by the SM account. For the account to succeed, Loewer’s thesis that alternative
decisions make no difference to the probabilities of past events would have to come
out as a consequence of the SM account.

Yet the SM account fails to imply Loewer’s thesis. As a matter of fact our
decisions at t are not completely independent of the macro-state of the world prior
to t – many of my decisions today reflect facts about my biography and are strongly
correlated with past experiences. While there may be decisions which amount to
mere random ‘picking’ and hence may be probabilistically independent of my past,
many of my decisions exhibit a certain coherence and represent facts both about
who I am and about the world.10 That is, for many of my decisions there are events
B in the past such that P(B/D(t)) 	= P(B/not-D(t)). Moreover, acknowledging this
dependence does not force us to deny Loewer’s assumption that different decisions
or choices are ‘open’ to an agent making a decision, since plausibly, this assumption

10 For a discussion of the distinction between ‘picking’ and ‘choosing’ see Holton (2006).
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can be captured by supposing that an agent’s beliefs and desires do not determine
her choices (see Holton, 2006: 4) and this supposition is compatible with the
claim that an agent’s choices are probabilistically correlated with events in her
past. Finally, even though my history plays a role in shaping the choices I make, I
consciously remember only very few events of my past and only very few of these
events have left completely reliable macroscopic traces in the present. Thus, the
present macro-state in conjunction with my memories does not screen off the past
from my decisions – that is, for many of my decisions it will be the case that there
are past events B such that P(B/M(t)&D(t)) 	= P(B/M(t)).11

Thus, many of an agent’s decisions do make a difference to the probabilities of
macro-events prior to the time of her making the decision. Now, Loewer argues that
even in these cases there still is an important asymmetry between past and future
correlations, since, he maintains, we cannot have control over events in our past.
According to Loewer, the condition of having control is strictly stronger than the
condition of probabilistic dependence: ‘control by decision requires that there be a
probabilistic correlation between the event of deciding that p be so and p being so
and one’s knowing (or believing with reason) that the correlation obtains’ (Loewer,
2007: 318). Loewer’s first condition on control is that there has to be a probabilistic
correlation between a decision D and the event B over which we have control. This
condition, I have argued, is satisfied for large sets of pairs of decisions and events
in their past.

A second condition is that we must have good reasons to believe that such a
correlation obtains. This condition, too, appears to be frequently satisfied, since
we are often in a position to discover how our decisions are correlated with our
history. Holton argues that one important role for decision or choice in our lives
might be that it enables agents to come to know something about themselves and
about the world that they would not have been in a position to know prior to their
decision (Holton, 2006). According to Holton, by looking at their choices, agents
‘can form, rather than just discover, their judgments on that basis’ (Holton, 2006:
10–11). On Holton’s account, an agent who has the right kinds of competences can
in certain circumstances learn from her decisions, since her decisions can act like a
finely tuned instrument that picks up on cues that are not consciously available to
the agent. If some account like this is correct, then there are correlations between
our decisions and past events that we can come to believe with reason and Loewer’s
second condition is satisfied as well for certain past events.

11 As a putative counterexample to his account Loewer asks whether my decisions now can affect the existence
of Atlantis. One implication of my discussion here is that this is not the kind of counterexample about which
Loewer should worry. Much more worrisome than the case of Atlantis for Loewer’s account are events in the
past that the agent facing a decision experienced, but that left (almost) no traces in the present.
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Yet one might think that while there are many cases where one of the two
conditions is satisfied individually, the two conditions can never be jointly satisfied
when the events in question lie in the past of a decision. One might think that we can
learn of correlations between our decisions and past events only when we remember
these events or are in the possession of other reliable records of them, but to the
extent that our memories or records are reliable they screen off the past experiences
from our present decisions. That is, when the second condition is satisfied, the first
condition fails. By contrast, when P(B/M(t)&D(t)) 	= P(B/M(t)), we cannot rely on
any records to come to know the correlation between our decisions and a past event
B. That is, when the first condition is satisfied, the second condition fails.

But this objection can be answered. We can learn of correlations between certain
kinds of decisions and past events when we do have memories of the past events
in question and then use that knowledge inductively to learn something about the
past in cases where we make similar decisions but where the relevant memories
are absent. This is not much different from how we come to believe reasonably
that our decisions are correlated with future events – by learning inductively from
experiences of past correlations.

Here is an example of this. While playing a piano piece that I know well I am
unsure whether I am currently playing a part of the piece that is repeated in the
score for the first or the second time. I decide to play the second ending rather than
repeating the part. Many of the notes I play, of course, I play without choosing or
deciding to play them. But in the case I am imagining the question what notes to
play next has arisen, and I consciously choose to play the second ending. Since I
have learned from experience that when I play a piece I know well, my decisions
to play certain notes are good evidence for where I am in the piece, my present
decision not to repeat the part constitutes good evidence for a certain past event –
my having already played the part in question once. We can even imagine that I
have a vague and unreliable memory of having already played the part. My decision
to play the second ending then can constitute additional evidence for the reliability
of my memory. In general, Loewer’s first and second conditions are jointly satisfied
in cases in which (i) we have good (inductive) reasons for treating our decisions as
providing us with information about our past or past events in the world and (ii) the
past events in question have left no or only very few and not fully reliable traces in
the present.

As a third condition Loewer requires that we have control over an event B only
if it is part of the content of our decision that B occur. This third condition is not
satisfied for events B in the past of the decision in the case of past events, since
we do not (normally) take ourselves to have control over the past. But I think this
last condition is too strong. We take ourselves to have control over events that are
consequences of our decision, even when the content of our decision is not that
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these events occur. For example, I may have the desire to arrive at the office by 9
a.m. and I have good reasons to believe that my arrival time is reliably correlated
with the time when I leave my home. Then my decision to leave at a certain time
provides me with a means of controlling when I arrive, even though my decision
is, say, a decision to leave at 8 a.m. rather than a decision to arrive by 9 a.m. It
seems that we can have control that p be so, by decision, even when our decision
is not a decision that p. Thus, two of Loewer’s conditions on control by decision
can be jointly satisfied by past events, while the third condition should be rejected
on independent grounds.

2.6 Conclusion

I have argued that, contrary to what Loewer suggests, it is a consequence of the SM
account that there are reconvergences and mergings of possible macro-histories,
as well as branchings. Moreover, the thermodynamic asymmetry results in the
destruction of records or traces of the past and there are many ‘human-scale’ macro-
events that leave no or only very few traces in their futures. This result presents
serious problems both for Albert’s and Loewer’s accounts of the asymmetry of
causal influence and control. If what I argued in this chapter is correct and if the
SM account allows that small alterations to the present macro-state and changes to
our decisions are probabilistically correlated with changes both to the macro-future
and to the macro-past, then Albert and Loewer still owe us an account of how we
came to posses strictly time-asymmetric concepts of causal influence or control.
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The past hypothesis meets gravity

craig callender

3.1 Introduction

Why does the universe have a thermodynamic arrow of time? The standard reason-
ing relies on the truism: no asymmetry in, no asymmetry out. If the fundamental
laws of Nature are time symmetric invariant (that is, time reversal), then the ori-
gin of the thermodynamic asymmetry in time must lie in temporally asymmetric
boundary conditions. However, this conclusion can follow even if the fundamen-
tal laws are not time reversal invariant. The more basic question is whether the
fundamental laws – whether time symmetric or not – entail the existence of a
thermodynamic arrow. If not, then the answer must lie in temporally asymmetric
boundary conditions. No asymmetry of the right kind in, no asymmetry out. As
it happens, as I understand them, none of the current candidates for fundamental
law of Nature entail the thermodynamic arrow. String theory, canonical quantum
gravity, quantum field theory, general relativity, and more all admit solutions lack-
ing a thermodynamic arrow. So a first pass at an answer to our initial question is:
the universe has a thermodynamic arrow due in part to its temporally asymmetric
boundary conditions.

Merely locating the answer in boundary conditions, however, is not to say much.
All it does is rule out thermodynamic phenomena being understood as a corollary
of the fundamental laws. But that’s true of almost all phenomena. Few events or
regularities can be explained directly via the fundamental laws. If we are to have a
satisfying explanation, we need to get much more specific.

One promising way of doing so is via the explanation Boltzmann initially
devised. Roughly put, the idea is as follows. Identify the thermodynamic entropy of
a system with the so-called Boltzmann entropy. Then make plausible the claim that
if the initial Boltzmann entropy of the system is low, then over ‘reasonable’ time
spans in the future it is highly likely that it will increase. Finally, assume as a bound-
ary condition that the initial Boltzmann entropy of the system was low. With these

34
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pieces in place, one can infer that the system will display a thermodynamic arrow
over the time spans in question. What is the system to which this applies? Because
it is difficult to know how to decouple systems in a non-arbitrary way, Boltzmann
took himself to be describing the entire universe. If this is right, we now have a
theory explaining why we have a thermodynamic arrow in our universe.1 And this
explanation appeals to a much more specific claim about boundary conditions than
the generic reasoning we engaged in above: namely, that the Boltzmann entropy
of the entire universe was very low (compared to now) roughly 15 billion years
ago. In particular, the entropy of this state was low enough to make subsequent
entropy increase likely for many billions of years. Let us follow Albert (2000) in
calling this claim the past hypothesis; let us call the state it posits the past state.
Physicists such as Boltzmann, Einstein, Feynman, Penrose and Schrödinger have
all posited the past state in one form or other. To me, if the Boltzmann framework
can be defended, then positing the past state in one form or other appears to be the
simplest answer to the problem of the direction of time in statistical mechanics.

Simplicity is nice, but truth is better. Is the past hypothesis true? When we look
to the early universe, as described by contemporary cosmology, do we observe
something resembling the past state? Some authors (e.g. Price, 1996) believe that
Boltzmann’s prediction is spectacularly well confirmed by cosmology. I agree that
if correct, the vindication of Boltzmann’s novel retrodiction should count among
the great achievements of science. It would be a prediction of the early state of the
universe from seemingly independent statistical mechanical arguments. However, if
Boltzmann’s prediction is right, why is it so unsung? The answer is that we cannot
be confident that the prediction is right. The reason for this is that it has never
been entirely clear how to apply Boltzmann’s statistical mechanical framework in
conditions such as those in the early universe.

Bracket all the questions still under debate about the big bang. Let us not worry
about cosmic inflation periods, the baryogenesis that allegedly led to the dominance
of matter over anti-matter, the spontaneous symmetry breaking that purportedly led
to our forces, and so on. The past state does not have to be the ‘first’ moment. Skip
to 10−11 seconds into the story when the physics is less speculative. Or skip even
further into the future if you are worried about the standard model in particle
physics. (And do not even think about dark energy or dark matter.)

Even still, for confirmation of Boltzmann’s insight, at the very least one needs
to understand statistical mechanics and Boltzmann entropy in generally relativistic
spacetimes, the entropy of radiation, how this entropy relates to the entropy of

1 Many physicists and some philosophers want more: they want to explain why the boundary condition is what
it is. In Callender (2004) I argue that this is not necessary.
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the matter fields, and more. Needless to say, all of this is highly non-trivial.2 That
the physics needed is largely unknown, of course, does not imply that the past
hypothesis is false; it merely explains why Boltzmann is not lauded or faulted for
his prediction.

What would suggest falsity is if – as a matter of principle – the basics of
Boltzmann’s framework just cannot be applied in the non-classical theories needed
to describe the physics of the early universe. That is Earman’s (2006) claim with
respect to general relativity. In a sharp attack, Earman claims that the past hypothesis
is ‘not even false’. The reason for this conclusion is that Earman is unable to
define a coherent and non-trivial Boltzmann entropy in general relativity. For the
Boltzmann entropy to make sense (as we will see) one needs a well-defined state
space for the theory and a measure invariant under dynamical evolution. We do
not have this for the space of all solutions to Einstein’s field equations. We do
have it for some very special cases. Restricted to Friedman–Robertson–Walker
metrics with a scalar matter field, one can use the Hawking–Page measure over a
two-dimensional reduced phase space or the Holland–Wald measure over a three-
dimensional reduced phase space. Earman shows that using either makes nonsense
of the past hypothesis.

Earman’s result is troubling, but perhaps not fatal to the past hypothesis.3 The
measures he cites, it must be admitted, are developed only for a highly idealized
set of solutions to Einstein’s field equations. The problem of developing measures
on the space of solutions to Einstein’s field equation is still in its infancy, e.g., we
are very far from claiming that either of the above measures is uniquely invariant
with respect to time evolution. Hence we do not have an in principle demonstration
that the Boltzmann entropy is indefinable in general relativity. There may be other
measures that work. What Earman shows is that given what we know, things do
not look good.

Given this situation, a natural question is whether the Boltzmann entropy makes
sense even in classical physics when we consider cosmological systems. In particu-
lar, since what is causing the present trouble is gravity, one would like to understand
an early classical state when the gravitational interactions are included in the sys-
tem. Such an approach would be deeply limited. As mentioned, to describe anything
like our universe one needs general relativity, the expansion of space, strong and
weak nuclear forces, and much more. While this claim is no doubt true, there are
virtues in beginning simply. For if we have trouble even here, then we know we

2 Please do not be fooled into thinking that various entropies used in the literature, including the so-called
Bekenstein entropy, are a quick fix. It is commonly asserted that the Bekenstein entropy is low in the past and
high in the future. Without a clear connection between this entropy and the Boltzmann entropy, however, this
claim simply is not relevant to our question.

3 Earman also launches other attacks on the past hypothesis and the uses to which it has been put, but we only
have space to focus on this problem.
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have a problem with gravity no matter how the measure-theoretic details work
out in general relativity. And if some problems in the classical context can only
be solved by adding non-classical elements, then that is still something interest-
ing to learn. Before worrying about general relativistic or quantum gravitational
thermodynamics, let us figure out whether classical gravitational thermodynamics
works.

As we shall see, even here in the Newtonian context – surprisingly – matters
get tremendously complex. Nasty ‘paradoxes’ threaten the very foundations of
gravitational thermodynamics. The point of the present chapter is to introduce
these problems and show how they affect the Boltzmann explanation described
above.

This chapter has two very modest goals. Firstly, and primarily, I want to demon-
strate why even classical gravity is a serious problem for the standard explanation
of entropy increase. If the chapter does nothing else, my hope is that it gets the prob-
lems induced by gravity the attention they deserve in the foundations of physics.
Secondly, I want to outline a possible way out of at least one difficulty. Most of the
work here will be in the set-up, both in seeing the exact nature of the problem and
in understanding how the work done on the statistical mechanics of stellar systems
can be conceived from a foundational perspective. Once framed, I want to make
plausible a very weak claim: that there is a well-defined Boltzmann entropy that
can increase in some interesting self-gravitating systems – where I get to define
‘interesting’. More work will need to be done to see if this claim really answers
the threat to the standard explanation of entropy increase. However, establishing
the claim might remove some of the pessimism one might have about the standard
explanation in the gravitational context, in addition to suggesting a clear path for
future study.

3.2 The past hypothesis

Classical phenomenological thermodynamics is a system of functional relation-
ships among various macroscopic variables, e.g., volume, temperature, pressure. It
tells us that some macro-states M covary or evolve into others, e.g., Mt1 → Mt2 .
One of these relationships is the famous second law of thermodynamics. It tells us
that an extensive state function S, the entropy, defined at equilibrium, is such that
changes in it are either positive or zero, i.e. entropy does not decrease. For realistic
cases, it seems to imply that in the spontaneous evolution of thermally closed sys-
tems, the entropy increases and attains its maximum value at equilibrium. Actually,
there is controversy whether the spontaneous movement from non-equilibrium to
equilibrium strictly follows from the second law; but even if it does not, there is
no controversy that this spontaneous movement occurs and is a central feature of
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thermodynamics. This feature describes many of the temporally directed aspects
of our world, e.g., heat going from hot to cold, gases spontaneously expanding
throughout their available volumes.

Why, from a mechanical perspective, do these temporally directed generaliza-
tions hold? Let us restrict ourselves to classical statistical mechanics, and in partic-
ular, the Boltzmannian interpretation of statistical mechanics. I find the Boltzman-
nian view of statistical mechanics provides a more ‘physical’ description of what
is going on from a foundational perspective than the rival Gibbsian perspective.4

The first step in understanding the Boltzmannian explanation of the approach
to equilibrium is distinguishing the macroscopic from microscopic description
of the system. The exact microscopic description of an unconstrained classi-
cal system of n particles is given by a point X ∈ �, where X = (q1, p1 . . . qn,
pn) and � is a 6n-dimensional abstract space spanned by the possible loca-
tions and momenta of each particle. X evolves with time via Hamilton’s equa-
tions of motion. Since energy is conserved, this evolution is restricted to a
6n − 1 dimensional hypersurface of �.

The same system described by X can also be described in the macro-language by
certain macroscopic variables (volume, pressure, temperature, etc.). This character-
ization picks out the system’s macro-state M . Notice that many other micro-states
will also give rise to the same macro-state M . If we consider all the X ∈ � that give
the same values for macroscopic variables as M gives, this will pick out a volume
�M. The set of all such volumes partitions is the energy hypersurface of �.

A quick word about the volume. A continuous infinity of micro-states will
give rise to any particular macro-state, so one requires the resources of measure
theory. The (6n−1)-dimensional energy hypersurface of � has a Lebesgue measure
naturally associated with it. From this measure one creates a probability measure,
and one assumes or hopes to prove that the probability of finding a system in region
�M of the energy hypersurface of � is proportional to the volume of �M, |�M|,
within |�|.

We can now define the entropy of a macro-state M. The Boltzmann entropy of a
system X that realizes M is defined by

S = k log |�M(X)|
where k is Boltzmann’s constant and ‖ indicates volume with respect to Lebesgue
measure. Notice that this entropy is defined in and out of equilibrium. In equilib-
rium, it will take the same value as the Gibbs fine-grained entropy if n is large.

4 I am not alone. Lavis (2005: 246) writes, ‘When confronted with the question of what is “actually going on”
in a gas of particles (say) when it is in equilibrium, or when it is coming to equilibrium, many physicists are
quite prepared to desert the Gibbsian approach entirely and to embrace a Boltzmannian view’. See Lavis for a
description of the Gibbsian view.
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Outside equilibrium, the entropy can take different values and will exist so long as
a well-defined macro-state exists.

Why should Boltzmann entropy increase? The answer to this is controversial,
and we do not have space to discuss it fully here. The hope is that one will be
able to show that typical micro-states underlying a non-equilibrium macro-state
subsequently head for equilibrium. One way to understand this is as follows.5 The
Boltzmann equation describes the evolution of the distribution function f (x, v),
over a certain span of time, and this evolution is one toward equilibrium. Let �δ ⊂ �

be the set of all particle configurations X that have distance δ, δ > 0, from f (x, v).
A good point X ∈ �δ is one whose solution (a curve t → X(t)) for some reasonable
span of time stays close to the solution of the Boltzmann equation (a curve t →
ft (x, v)). A bad point X ∈ �δ is one that departs from the solution to the Boltz-
mann equation. The claim that typical micro-states underlying a non-equilibrium
macro-state subsequently head for equilibrium is the statement that, measure the-
oretically, most points X ∈ �δ are good. The expectation – proven only in limited
cases – is that the weight of good points grows as n increases. The Boltzmannian
wants to understand this as providing warrant for the belief that the micro-state
underlying any non-equilibrium macro-state one observes is almost certainly one
subsequently heading toward equilibrium. As mentioned, the desired conclusion
does hang on highly non-trivial claims, in particular, the claim that the solution
to Hamilton’s equations of motion for typical points follows the solution to the
Boltzmann equation.

Here is a loose bottom-to-top way of picturing matters that will come in handy
later (see DeRoeck, Maes and Netočný, 2006). We know at the macroscopic level
that non-equilibrium macro-states evolve over short periods of time into closer-
to-equilibrium macro-states. That is, M1 at t1 will evolve by some time t2 into a
closer-to-equilibrium macro-state M2. Call �M1t1 the set of states in � corresponding
to M1 at t1, �M2t2 the set corresponding to M2 at t2, and φt2−t1�Mt1 the time evolved
image of the original set M1. Then, if our picture is right, the second law is telling
us that φt2−t1�Mt1 is virtually a proper subset of �Mt2 . That is, almost all of the
points originally in M1 have evolved into the set corresponding to M2. Liouville’s
theorem states that a set of points retains its size through Hamiltonian evolution.
Hence the volume of φt2−t1�Mt1 is equal to the volume of �M1t1 . Since the former is
virtually a proper subset of �Mt2 , that means that |�Mt1 | ≤ |�Mt2 |. From the definition
of entropy it follows that S(Mt2 ) ≥ S(Mt1).

The problem of the direction of time is simple to see. Nowhere in the above
argument did I say whether t2 is before or after t1. Given a non-equilibrium state at

5 For a general discussion, see Goldstein (2002) and references therein. For the specific formulation here, see
Spohn (1991: 151). And for some of the challenges this approach faces, see Frigg (2009).
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t1, the above reasoning shows that it is very likely that it will subsequently evolve
to a later higher entropy state at t2, where t1 is earlier than t2. However, it is also
true that the reasoning shows that most likely the state at t1 evolved from an earlier
higher entropy state, in this case where t2 is earlier than t1. There is nothing in the
time reversible dynamics nor in the above reasoning to rule out entropy increase in
both temporal directions from the non-equilibrium present. The famous recurrence
and reversibility challenges to Boltzmann point out that even good points X will
go bad if given enough time (recurrence) or allowed to go in the wrong temporal
direction (reversibility).

All manner of answers to this problem have been proposed – appeals to time
asymmetric environmental perturbations, ignorance, electromagnetism, and more.
In my opinion, where these proposals have merit, they eventually reduce to an
appeal to temporally asymmetric boundary conditions. Ultimately we need to
assert that in the direction we call ‘earlier’ entropy was in fact very low compared
to now. As mentioned at the outset, the specific form of this claim in the present
context is that the past hypothesis is true; that is, that the Boltzmann entropy of the
universe was extremely low roughly 15 billion years ago.

3.3 The past hypothesis meets gravity

No sooner is the past state posited than it is immediately challenged with a bit
of a problem: it seems to be manifestly false. When we look to cosmology for
information about the actual past state, we find early cosmological states that
appear to be states of very high entropy, not very low entropy. Cosmology tells us
that the early universe is an almost homogeneous isotropic state of approximately
uniform temperature, i.e. a very high entropy state, not a low-entropy state as
mandated by the past hypothesis. Here is the physicist Wald:

The above claim that the entropy of the very early universe must have been extremely
low might appear to blatantly contradict the ‘standard model’ of cosmology: there is
overwhelmingly strong reason to believe that in the early universe matter was (very nearly)
uniformly distributed and (very nearly) in thermal equilibrium at uniform temperature.
Does not this correspond to a state of (very nearly) maximum entropy, not a state of low
entropy?

(Wald, 2006: 395)

If we consider point particles interacting without gravity, then the answer certainly
seems to be in the affirmative.

Once the problem is stated, however, authors quickly reassure us that it is
only apparent. We forgot to include gravity, we are told, and yet by including
gravity the ‘situation changes dramatically’ (Wald, 2006: 395). Gravity saves the
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past hypothesis. This claim is made with equal frequency and force by scores of
physicists and philosophers of physics.

How does gravity save the past hypothesis? Here is a (too) simple expression
of the idea. If we think of a normal terrestrial gas in a box, as a result of repulsive
forces and collisions, its ‘natural tendency’ is to spontaneously spread throughout
its available volume into a homogeneous state. If this is right, then when we
add an attractive force like gravity the reasoning should reverse. For it is the
‘natural tendency’ of a gravitating system to spontaneously move toward more
clumped states. Masses attract one another, and both in theory and computer
simulation self-gravitating Newtonian systems get more and more clumpy with
time. With gravity, inhomogeneity is the new homogeneity. Since low-to-high
entropy transitions express the natural tendency of systems, it ought to be that
in gravitating systems clumped states are of high entropy and spread out ones
of low entropy. The cosmic background radiation shows that the universe was
more homogeneous in the past. Hence the past state is vindicated. In fact, one
might go so far as to say not only that it does not falsify the standard explanation
of entropy increase, but that it is a stunningly accurate prediction made by the
standard explanation.

Of course, this simple idea leaves out the momentum sector of phase space.
There is no ‘natural tendency’ toward spatial homogeneity or inhomogeneity in
either gravitating or non-gravitating systems. The oil and vinegar separating in
your container of salad dressing is an entropy increasing process. Many spatial
inhomogeneities grow in perfectly normal entropy increasing situations, and pre-
sumably homogeneities can develop in gravitational situations. The idea must be,
then, that the increasing concentration in the configuration sector of phase space
is compensated by a greater decreasing concentration in the momentum sector of
phase space. As we go forward in time, one – not implausibly – imagines the
velocity vectors as becoming increasingly chaotic.

Assume that the total entropy can be expressed as a simple sum of the config-
uration sector entropy |�Mq| and the momentum sector entropy |�Mp|. Then it is
easy to see that it is possible that entropy increase or decrease with time. When
gravity is the dominant force then presumably |�Mq| will decrease as time passes if
the initial state is originally very dispersed. Although the system may develop into
various quasi-stable configurations, in the long run we might expect it to become
more concentrated in space. On the other hand, we might expect particles grad-
ually to be ‘slingshot’ far away, so that the system evaporates and becomes very
dispersed in space. Similarly, it is possible that |�Mp| grows as particles’ velocities
become increasingly randomly distributed with time; but it’s also possible that the
velocities become more aligned as time passes. What is needed is that log |�M|
increases with time and this can be achieved in a variety of ways.
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We know in the normal non-gravitational case that entropy can go up or down.
There are, as described before, good and bad initial states, the bad ones leading to
subsequent entropy decrease. Fortunately, with respect to the Lebesgue measure,
most of the states are believed to be good ones. So what is of interest is not whether
entropy can go up or down when gravity is turned on – of course it can – but
whether for most initial states entropy increases.

A really pressing question then is whether the standard probability distribution
crafted from the Lebesgue measure is empirically adequate when gravitational
interactions are included. Can we see the motion of the stars, and so on, as the
movement to an equilibrium state, where equilibrium is understood as the largest,
‘most probable’ macro-state according to the Lebesgue measure? A priori, the
applicability of the Boltzmann framework, and in particular, the empirical adequacy
of the Maxwell–Boltzmann probability distribution, is not guaranteed. New physics
presents new challenges. Indeed, when one states this hypothesis one realizes that
the standard explanation of the direction of time – which assumes this framework
works with gravity – tries to explain with one stroke two possibly quite distinct
processes. It tries to account for ordinary thermodynamics and the rise of structure
in the cosmos. The first is a primarily non-gravitational process and the second
is a primarily gravitational process. The past hypothesis is thus a tremendously
ambitious claim, and if successful, the result would be a major unification in
physics. But we should be clear that it is ambitious and that it’s not obvious that
the two processes can be given the same explanation.6

At this point the natural thing to do would be to calculate the Boltzmann
entropy, with gravity included, of some toy gravitational systems and see if entropy
increases. Then one would like to compare the results there with our actual cos-
mological history. However, for various reasons to be discussed, we are stymied in
this attempt.

3.4 The gravitational paradoxes

Statistical mechanics and thermodynamics work flawlessly in some gravitational
contexts. In terrestrial cases where we can approximate the gravitational field as

6 I should not give the impression that no one else is aware of potential difficulties with the usual response besides
Earman. Wald (2006), for instance, comments that statistical thermodynamics is usually justified via ergodicity,
and yet ergodicity will not obtain in a general relativistic universe (the universe might be open, and it is not time
translation invariant in the right way). He also warns that the real story will include discussion of black hole
entropy and quantum gravity. As mentioned above, I think that unless one shows that the black hole entropy
is connected to the Boltzmann entropy, then the black hole entropy will not be relevant to our explanation.
The first worry may also be irrelevant, as stated, since the Boltzmannian hopes his or her explanation uses
requirements on the dynamics that are weaker than ergodicity. But the spirit of Wald’s point is right: once the
Boltzmannian is clear about the necessary dynamics, it will be a good question whether they obtain in generally
relativistic spacetimes.
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uniform, there is simply no problem. Thermodynamics obviously works in such
cases, and the extension of statistical mechanics to systems with external uniform
fields does not require any major modification (see, e.g., Landau and Lifshitz,
1969: 72; Rowlinson, 1993). However, we are interested in the more general
question, the thermodynamic and statistical mechanical properties of a system
self-interacting via time-varying gravitational forces. We will operate under the
idealization that gravity is the only force obtaining between the particles and we
will restrict ourselves to classical gravitation theory. Therefore, we investigate the
thermodynamic properties of the famous classical N-body problem in gravitation
theory.

The Hamiltonian describing the system for N gravitationally interacting particles
of mass m is

H (q, p) =
N∑

i=1

p2
i

2mi

− 1

2

N∑
i=1

∑
j 	=i

Gmimj

rij

(3.1)

where rij = ∥∥qi − qj

∥∥. Although this system is ideal, some globular star clusters
(N = 105−106), galaxies (N = 106−1012), open clusters (N = 102−104), and
planetary systems are decent instantiations of this ideal system. That is, the salient
features of these systems over large time and space scales are due to gravity.
Collisions, close encounters and other behaviours where other forces are relevant
are rare, so ignoring inelastic interactions does not cause great harm. The question
is then whether the stars in such systems or even the galaxies themselves, when
idealized as point particles, admit a thermodynamic description. Can we think of
the stars as the point particles in a thermodynamic gas?

In the literature on classical gravitational thermodynamics,7 most papers mention
some subset of five obstacles facing any such theory: non-extensivity, ultraviolet
divergence, infrared divergence, lack of equilibrium, and negative heat capacity.
The first problem is that the energy and entropy of systems evolving according to
(3.1) can be non-extensive, even though in thermodynamics these quantities are
extensive. The second problem arises from the infinite range of the gravitational
potential and the lack of gravitational shielding; together they imply that the inte-
gral over the density of states can diverge. The third problem arises instead from
the short-range nature of the potential. Here the problem is the local singularity
of the Newtonian pair interaction potential. Two classical point particles can move
arbitrarily close to one another. As they do so, they release infinite negative grav-
itational potential energy. Partition functions, which need to sum over all these
states, thereby diverge. The fourth problem comes in many forms, some linked to

7 For entries into this literature, see Padmanabhan (1990); Saslaw (2000); Dauxois et al. (2002); Heggie and Hut
(2003).
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the divergence problems. But in general there are many problems with defining
an equilibrium state for a system evolving via (3.1). Finally, the fifth problem,
which is not really a paradox but merely extremely counterintuitive, is that the heat
capacity for systems evolving via (3.1) can often be negative, whereas in classical
thermodynamics it is always positive.

To get an intuitive feel for how gravity causes trouble, focus on just one issue, the
non-extensivity problem. Intuitively put, extensive quantities are those that depend
upon the amount of material or size of the system, whereas intensive quantities
are those that do not. The mass, internal energy, entropy, volume and various ther-
modynamic potentials (e.g., F, G, H ) are examples of extensive variables. The
density, temperature, and pressure are examples of intensive variables. Mathemat-
ically, the most common expression for extensivity is the definition that a function
f of thermodynamic variables is extensive if it is homogeneous of degree one. If
we consider a function of the internal energy U, volume V, and particle number N,
homogeneity of degree one means that

f (aU, aV , aN) = af (U,V,N ) (3.2)

for all positive numbers a. Consider a box of gas in equilibrium with a partition
in the middle and consider the entropy, so that a = 2 and f = S. Then S(2U, 2V,
2N) represents the joint system, and Equation (3.2) says that this is the same as
two times the individual entropies of the partitioned component systems. Extensive
functions are also assumed to be additive, and with a slight assumption, they are.
A function – using our example, entropy – is additive if

S(U1 + U2, V1 + V2, N1 + N2) = S(U1 + V1 + N1) + S(U2 + V2 + N2)

With minimal assumptions homogeneity of degree one implies additivity.8 With
these definitions in hand, let us turn to statistical mechanics, the theory that explains
why thermodynamical relationships hold for mechanical systems.

Perhaps the most basic assumption of thermodynamics / statistical mechanics is
that the total energy of any thermodynamic system is approximately equal to the
sum of the energies of that system’s subsystems. If we have a large gas in a box, and
we conceptually divide it into two subsystems, we expect the total energy to be the
sum of the two subsystem energies – so long as the subsystems are still macroscopic
systems. In many influential treatments of the theory, this assumption is regarded
as the most basic of all, e.g., Landau and Lifshitz’s (1969) classic treatment begins
with essentially this assumption.

One of the features that makes this assumption plausible is that in terrestrial
cases we are usually dealing with short-range potentials. At a certain scale matter

8 See Dunning-Davies (1983) and Touchette (2002) for useful discussions of extensivity and additivity. Because
of their close connections for realistic systems, I will use the two more or less interchangeably.
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Fig. 3.1. Fashioned after Binney and Tremaine (1987: 188)

is electrically neutral and gravity is so weak as to be insignificant. If the potential is
short range and our subsystems are not too small, then the subsystems will interact
with one another only at or in the neighbourhood of their boundaries. When we
add up the energies of the subsystems, we ignore these interaction energies. The
justification for this is that the interaction energies are proportional to the surfaces
of the subsystems, whereas the subsystem energies are proportional to the volumes
of the subsystems. So long as the subsystems are big enough, the subsystem
energies will vastly trump the interaction energies as the number of subsystems
increases because the former scale as (length)3 and the latter as (length)2. The basic
assumption is then justified.

However, if gas molecules are replaced by stars – that is, short-range potentials
replaced by long-range potentials – this reasoning does not work. Consider a star at
the apex of a cone (Binney and Tremain, 1987: 187–8) and the force by which the
stars in the cone attract the star (Fig. 3.1). Suppose the other stars are distributed
with a uniform density. The force between this star and any other falls off as r−2,
but the number of such stars increases along the length of the cone as r2. Thus any
two equal lengths of the cone will attract the target star with equal force. If the
density of stars is perfectly homogeneous and isotropic, the star will not feel any
force. But if not homogeneous – even if not homogeneous only at great distances
– the star will feel a net force. For this reason the force on any particular star is
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typically determined more by the gross distribution of matter in the galaxy than by
the stars close to it. Collisions do not play as large a role as they do in a typical
gas in a box on Earth. As is sometimes said, terrestrial gas molecules tend to lead
violent lives determined in large part by sudden disputes with their neighbours;
stars tend to lead comparatively peaceful lives because they are in harmony with
the overall universe.

Returning to energy, we see that the interaction energies may not be proportional
to the subsystem surfaces. For short-range potentials, the dominant contribution to
the energy comes from nearby particles; but for long-range potentials, the dominant
contribution comes from distant particles. To drive home the point, consider a sphere
filled with a uniform distribution of particles. Now add a particle to the origin and
consider its internal energy U:

U ∝
R∫

0

4πr2 dr ρr−3−ε ∝
R∫

0

dr r−1−ε

One can then verify that with ε > 0 (‘short-range potentials’), the significant
contribution to the integral comes from near the particle’s origin, whereas with
ε < 0 (‘long-range potentials’), the contribution comes from far from the origin
(Padmanabhan, 1990).

Consider again a chamber of gas divided into two equal boxes, A and B. If the
particles are interacting via long-range forces, the particles in box A will feel the
particles in box B as much or even more than the particles nearby. Let EA represent
the energy of box A and EB represent the energy of box B. As a result of the
interaction, it is easy to devise scenarios whereby EA = EB = −a, where a > 0,
yet where the energy of the combined system E = 0, not −2a. The energy might
not be even approximately additive.

When the additivity and extensivity go, so do large portions of equilibrium ther-
modynamics and statistical mechanics. For example, when a system is in equilib-
rium, its large subsystems also will be in equilibrium. This is no longer necessarily
the case. And additivity is a requirement for the equilibrium second law in ther-
modynamics (see Lieb and Yngvason, 1998). Moreover, in statistical mechanics it
is built into the heart of the theory. The famous Boltzmannian probability W of a
macro-state is assumed equal to the product of the probabilities of the subsystem
macro-states, i.e. Wtotal = WaWb. Boltzmann’s definition of entropy as S = k ln W
straightforwardly implies that Stotal = Sa + Sb. And there is no conventional ther-
modynamic limit for non-extensive systems. For a rigorous discussion of this see
Padmanabhan (1990), Lévy-Leblond (1969) and Hertel et al. (1972). This last fact
should not be surprising. The existence of the thermodynamic limit depends on
making the contribution of surface effects go to zero as N, V go to infinity. In a
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non-additive system, we saw that the surface effects are not going to get smaller
as N and V increase. Ironically, the thermodynamic limit does not apply to very
large systems if one includes the force primarily relevant to the dynamics of those
systems.9

3.5 The problem

As interesting as these problems are, they are – at first glance – orthogonal to our
main worry. The problems described are problems for equilibrium thermodynam-
ics and statistical mechanics, but we are interested in non-equilibrium statistical
mechanics.

The reason this is so is because the past state is surely not an equilibrium
state, yet arguably it still has a Boltzmann entropy. Why is the past state a non-
equilibrium state? It is the global state of the universe, and the very reason it is
posited is that subsequent evolution will spontaneously take the global state to
regions corresponding to higher entropy. But if it is in equilibrium, the system will
not change unless an external constraint is removed; yet since the system is the
global state, there is no external constraint to remove. The unavoidable conclusion
is that the past state must not be an equilibrium state. Indeed, no one expects the
past state to stay that way. It is expected, under the attractive force of gravity,
to begin clumping. The past state, therefore, simply does not have an ordinary
equilibrium entropy corresponding to equilibrium thermodynamics or equilibrium
statistical mechanics. But it does have a Boltzmann entropy. The definability of the
Boltzmann entropy in systems outside equilibrium is touted as perhaps its greatest
virtue. Since we are restricting ourselves to the classical phase space and assuming
a Lebesgue measure upon it, we do not have the potentially in-principle problems
Earman worries about with general relativity. All one really needs for a Boltzmann
entropy to exist is a well-defined macro-state and a well-defined notion of volume
in phase space. If the earliest cosmological times do not correspond to a macro-
state for some reason, then the past hypothesis picks out the ‘first’ state that does.
This macro-state will correspond to a particular volume |�M|, and hence it has an
entropy. The problems with equilibrium statistical mechanics in the presence of

9 Before concluding this section I should point out that there is a large research program devoted to the statistics
of non-extensive systems that I am here bracketing aside. This is the approach of Tsallis statistics. The Tsallis
school develops a generalization of the Boltzmann and Gibbs entropies, namely, the Tsallis entropy. The Tsallis
entropy reduces to the Boltzmann and Gibbs entropies when the system is extensive, but is different otherwise.
The motivation behind the program is to show that the Tsallis entropy works well in situations where the
Boltzmann and Gibbs entropies allegedly break down. Long-range force systems like self-gravitating systems
are supposed to be one example. The debate between the Tsallis school and others believing Boltzmann–Gibbs
suffices is often very heated. For the purposes of this chapter I want to stay conservative and remain within the
Boltzmann framework – though for some criticism of the Tsallis school, see Nauenberg (2003). That said, we
ought to acknowledge that one way of responding to the above worries is to change frameworks and go outside
the normal Boltzmann–Gibbs picture.
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gravity are worrying, but so far not directly relevant to the increase of Boltzmann
entropy.

Or are they? One cannot completely divorce non-equilibrium theory from equi-
librium theory. Think of the issue as follows. The Boltzmann entropy for the
gravitating system described by the past state will exist, but what will it do? What
one wants is not merely the existence of entropy but also the functional relationships
that are usually entailed by a system having an entropy. Why think, for instance,
that a system in the past state will increase its entropy? And more generally, granted
that the past state picks out some volume in phase space, what gives this volume
its physical significance?

As Boltzmann famously showed, in the case of the dilute gas we have everything
we could want from the Boltzmann entropy. Recall that the argument goes as
follows. The H-theorem shows that the entropy S(f(x, v))

S(f ) = −N

∫
f ln f d3x d3v (3.3)

increases monotonically with time when f is evolving via the (independently moti-
vated) Boltzmann equation. Here f is the distribution function defined over six-
dimensional µ-space when partitioned into a finite number of cells. S( f ) is shown
to increase with time except for when f is a local Maxwellian, whereupon S( f ) is
stationary. Since Maxwell had already shown that his distribution corresponded to
equilibrium, the idea of S( f ) playing the role of entropy is naturally suggested.
Note that so far none of this bears on the Boltzmann entropy. The crucial link
is provided by the detour via six-dimensional µ-space. By making a number of
assumptions appropriate to the dilute gas – but certainly not to gases with strong
interactions – Boltzmann is able to ‘translate’ distributions f into hypervolumes in
�. In particular, he is able to show via the famous ‘combinatorial argument’ that
the distribution f corresponding to the Maxwell distribution occupies far and away
the greatest proportion of volume in �. Via this translation Boltzmann shows that
all the desirable properties true of S( f ) are true of the Boltzmann entropy too in the
case of the dilute gas. Doing so motivates the entire picture of micro-states most
likely evolving into the dominant equilibrium sections of �. (See Uffink, 2007 for
more discussion.)

It is important to stress that it is the above connections to the H-function and
the Boltzmann equation that gives the volume in � any claim to be physically
significant. After all, there are other volumes calculated in other bases, e.g., energy,
which do not have this feature.

Now we immediately see at least one big problem for providing the Boltzmann
entropy physical significance in the gravitational case. Boltzmann’s argument can
plausibly be extended to some systems for which it was not originally intended,
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and new arguments mimicking Boltzmann’s can show that the Boltzmann entropy
for some non-dilute gases has physical significance (e.g, Garrido et al., 2004;
Goldstein and Lebowitz, 2004). However, in the gravitational case we know we in
general cannot use Boltzmann’s argument and there is not much reason to hope
anything like it will help.

For instance, consider an important property we need to know of our system:
the macro-state f (x, v) that has maximum volume in �. One can hope to find
this via the combinatorial argument only if one can translate between µ-space and
�-space – and one can only do this because the gas is dilute and interactions are
effectively turned off. What one does is maximize f (x, v) subject to two constraints.
One constraint is associated with particle number, but the other is more directly
relevant to us: ∫

V

dx
∫
R3

dv
1

2
mv2f (x, v) = E (3.4)

where E is the total energy. In other words, one is maximizing conditional on
the claim that the total energy is the sum of kinetic energies. If this is so, the
Maxwell equilibrium distribution is the macro-state with the maximum volume in
�. In fact, as n goes to infinity departures from the equilibrium macro-state go to
zero. This step warrants the additional geometric interpretation the Boltzmannian
asserts. The picture of typical non-equilibrium states moving to equilibrium states
because there are vastly more of the latter than former is not justified except by this
procedure.

In the present case, however, we are directly challenged by the total energy not
being approximately the sum of independent individual energies. Equation (3.4) is
manifestly false and not even approximately true for many self-gravitating systems.
The gravitational potential energy contributes to the overall energy of the system.
Without (3.4) one cannot show that the largest macro-state in phase space is the
equilibrium state; absent this, one cannot make plausible that typical initial states
go to equilibrium. So although the loss of a maximization constraint may seem like
a quibble, an awful lot hangs on it. In fact, the very terms by which we conceived
the original question depend on this; unless the energy factorizes there is no reason
to think the entropy S( f ) is a simple sum of a configurational contribution and
momenta contribution, so the intuitive reasoning we engaged in earlier does not
hold. And if this were not bad enough, we are also lacking a gravitational version of
the Boltzmann equation for which one can prove an H -theorem (more on this later).
I hope this discussion adequately displays the problem: although the gravitational
system has a well-defined Boltzmann entropy, that by itself does not imply any
particular subsequent behaviour.
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Perhaps we can look at the glass as half full? We already knew the above problems
for the Boltzmann explanation. Many critics of Boltzmann (e.g. Schrödinger, 1948
[1989]) point out that it works rigorously only for the case of dilute gases, yet
most systems are of course not dilute gases. The Boltzmannian can deflate some
of these worries by showing how many systems are approximately like dilute
gases, how numerical simulations of cases that are not dilute gases vindicate the
Boltzmannian claims, and so on. But there are of course many systems that do
not fit this mould, and the strongly self-gravitational system is one of them. All
we have done is highlight the existing problem by displaying a class of systems
that are especially far from being treated as dilute gases. And we could have made
this argument with plenty of non-gravitational systems too, e.g., some types of
plasmas. Maybe, perversely, this is good news to the Boltzmannian. The problem
gravitational interaction presents to the standard story the Boltzmannian tells is as
bad as but not obviously worse than the problem other systems already cause the
Boltzmannian.

It would be nice if we could view the problem as simply a new version of the
same old one already challenging Boltzmann. But it’s not clear that even this is
the case. In astrophysics researchers often make assumptions about the stars that
warrant a description of the system via f on µ-space, not the full �-space. That
is, they often work with the ‘one-particle’ distribution function on six-dimensional
µ-space just as Boltzmann did in his work on dilute gases. This restriction on f is
typically justified in the astrophysics literature by the fact that gravitational systems
are essentially collisionless for long periods of time. So what we are doing now is
restricting ourselves to a regime wherein some of the usual Boltzmann apparatus
can be salvaged. The entropy is defined as (3.3) above.

Under these restrictions, let us now search for the state of maximum entropy,
which will be our equilibrium state. Even here, however, we run into problems. To
find out what equilibrium looks like for self-gravitating systems, therefore, we can
find the distribution f (x, v) that maximizes the equilibrium entropy (3.3). However,
if one looks for the distribution that maximizes S for a given mass M and energy E,
then it is a major result in the field that S is extremized iff f (x, v) is the distribution
function of the isothermal sphere (Ogorodnikov, 1965; Lynden-Bell, 1967; Lynden-
Bell and Wood, 1968). The isothermal sphere is an infinite n self-gravitating ideal
gas. That is, there is no distribution function that maximizes S while keeping M
and E finite. Maintaining finite M and E, one can obtain arbitrarily large entropies
by rearranging the configuration of stars, as Binney and Tremaine (1987) show.
There is no f (x, v) that maximizes the entropy (3.3) for finite M and E. (Binney
and Tremaine (1987) take this result to show that galaxies and presumably other
typical stellar configurations are not the result of long-term thermal equilibrium.
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The quest in the astrophysics literature is to associate typical stellar configurations
with quasi-stationary states, not true equilibrium states.10)

The Boltzmannian may reply that this problem is an artefact of the simplification,
that with the ‘true physics’ on � (instead of on µ) the problem will go away.
That puts the Boltzmannian in an awkward position, however. The Boltzmannian
cannot show this is the case because then she meets the gravitational version of
Schrödinger’s worry: that one cannot prove much outside the simple case. In the
non-gravitational case the Boltzmannian replies to Schrödinger by pointing out all
the success she had with dilute gases, toy models, computer simulations, and so
on. Now in the gravitational case it looks like the Boltzmannian needs to solve the
hard case to help answer problems with the allegedly easy case.

Obviously more study is needed of this problem. Perhaps there is still a way the
Boltzmannian can by-pass these difficulties. Right now, however, gravity seems to
have pulled the Boltzmannian into a serious thicket of problems.

3.6 A way forward?

That was the bad news. Let us conclude, however, with some good news.
In Section 3.3 we learned that the problem we have is giving the Boltzmann

entropy of a gravitating system physical meaning. In the case of a non-gravitating
dilute gas we saw that the Boltzmann equation, the H-theorem and the connection
to the H-function provided the Boltzmann entropy physical significance. Can we
do this for other systems, in particular, gravitational systems?

In some regimes, yes.
To understand the general idea, recall again what Boltzmann does for dilute

gases. Boltzmann considers a distribution f (x, v, t) that evolves according to the
Boltzmann equation, an equation independently motivated on physical grounds.
His famous H-theorem shows that a function of f, S( f ), increases with time except
when f (x, v) is a local Maxwellian. The reason why any of this is interesting is
that S( f ) is shown to be roughly equal to the Bolztmann entropy k log|�M(X)|
and the Maxwellian distribution is the distribution corresponding to the maximum
Boltzmann entropy. Thanks to this connection, we know that so long as the system
is appropriately modelled via the Boltzmann equation, the genuine Boltzmann
entropy will increase with time until reaching equilibrium.

There are physical regimes, of course, where the Boltzmann equation is not a
good approximation, and in those cases different macroscopic kinetic equations
often apply. Are there macroscopic kinetic equations that are good approximations

10 See, for instance, Chavanis (2005).
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of real systems wherein the dominant interaction is gravitational? Can we get an
H-theorem for these regimes? And can we show that this H-function H = −S( f )
is roughly equal to the Boltzmann entropy? The answer in each case is yes.

In astrophysics the full n-body problem is often too hard to study, even in
computer simulations in many instances, and hence one considers regimes wherein
various kinetic equations are appropriate. Astrophysics is filled with macroscopic
equations of motion for distributions. Indeed, since plasmas interact via long-range
forces too, many of the same kinetic equations used in plasma physics often work
in astrophysics too, so an awful lot is known about many equations.

Consider a galaxy of n identical stars with characteristic radius r. The time it takes
any star to cross the galaxy is r/v, where v is the typical speed of a star (determined
by G, n, r, mass); this is called the crossing time of the star. Suppose that the star
evolves in a background wherein the mass is perfectly smoothly distributed, not
clumped up into individual stars. Call this its mean trajectory. When would the
difference between the star evolving in this background versus a more realistic
background show up in its velocity (where by ‘show up’ we mean the velocity
changes by order of itself)? Leaving the details to textbooks on galactic dynamics,
the answer is that the star is deflected from its mean trajectory over order 0.1 n/ln n
crossing times. Hence one concludes that for systems that are less than 0.1 n/ln n
crossing times old, individual stellar encounters are more or less unimportant. Many
galaxies, with n ≈ 1011 stars and a few hundred crossing times old, are examples.
For these systems, typically where the forces are long range and weak, a natural
move is to replace the actual force by its spatial average. Many self-gravitating
systems enjoy large space and time scales where this approximation is justified.

A major equation of study in galactic dynamics is therefore the Vlasov equation,
or the collisionless Boltzmann equation. The equation is for a density of particles
subject to an average force field:

∂f

∂t
+ v · ∇f − ∇� · ∂f

∂v
= 0 (3.5)

where f = f (x, v, t) d3x d3v and φ is a smooth gravitational potential. Equation
(3.5) is essentially a special case of the Liouville equation (for a derivation of (3.5),
see Kandrup, ms; 1981). Despite its simplicity, the Vlasov equation is described in
textbooks as the fundamental equation of stellar dynamics. What is nice for us is
that if we define an entropy via this f, S(f ), then one can show that it is proportional
to the Boltzmann entropy. What is not so nice, however, is that we cannot show that
entropy increases for distributions evolving according to the Vlasov equation.11

11 In terms of the conjecture mentioned in Section 3.2, DeRoeck et al. (2006) make clear that not all macroscopic
equations will produce an H-theorem. In particular, and skipping the details, they explain that if every micro-
state X is typical of the macroscopic equation, then the argument does not go through. For Equation (3.5),
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This is not at all surprising, since the Vlasov equation is more or less the Liouville
equation.12

Nonetheless, there is a lot more to stellar dynamics than the Vlasov equa-
tion. Many systems are such that stellar encounters have played a major part in
their development. Globular clusters, open clusters, galactic nuclei and clusters of
galaxies all have n, crossing times and lifetimes making the collisionless regime
inappropriate to describe them. Outside this Vlasov regime, kinetic equations other
than (3.5) are required, equations including some effect of collisions and close
encounters. There are scores of kinetic equations used in the subject, but for
concreteness let me mention two, namely, the Fokker–Planck equation and the
essentially equivalent Landau equation. (The Landau equation is a symmetric form
of the Fokker–Planck equation.) These are equations of form

∂f

∂t
+ v · ∇f − ∇� · ∂f

∂v
= C[f ] (3.6)

where C[f ] denotes the rate of change of f due to encounters and collisions.
The Fokker–Planck and Landau equations are of form (3.6) with specific collision
terms derived for small-angle grazing collisions. The equations are derived by
expanding the Boltzmann equation about small-angle grazing collisions. For the
exact form of C[f ] see Balescu (1963), Spohn (1991) or Heggie and Hut (2003).
Both Fokker–Planck and Landau are useful for gas/fluid systems that are weakly
coupled, and they are particular useful for stellar systems in which collisions are rare
and interactions weak. In astrophysics, the Fokker–Planck equation is advertised as
the ‘most accurate model of a stellar system, short of the N-body model’ (Heggie
and Hut, 2003: 87).

What I want to point out is that for the Fokker–Planck equation, one of the most
successful kinetic equations in astrophysics, one can get everything one wants.
In particular, for many broad classes of collision terms C[f ] one can prove an
H-theorem for (3.6). One can show that this H-function is related to the Boltzmann
entropy in the same way Boltzmann does for the dilute gases. And one can show
that the stationary or equilibrium distribution of (3.6) is equivalent to the solution
one obtains from maximizing the Boltzmann entropy in the presence of an external
potential. Since the Fokker–Planck equation has been extensively studied, and these
results are relatively well known, I will not prove any of it here. I simply will refer the
reader to the relevant literature for proofs and discussions of these assertions (see,
e.g., Green, 1952; Balescu, 1963: 170ff; Liboff and Fedele, 1967; Spohn, 1991: 83;

every X is typical: every solution of Hamilton’s equations will follow solutions of (3.5) for f. We will not,
therefore, get an H-theorem.

12 A coarse-grained entropy might increase, however. In gravitational dynamics physicists speak of non-collisional
‘phase mixing’ as another means of a system moving to equilibrium. See Heggie and Hut (2003: 93) and
Chavanis (1998).
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van Kampen, 1981; Risken, 1989).13 I note in addition that many of these results
have recently been extended to the non-linear Fokker–Planck equation too (e.g.,
Frank (2005) and references therein). Of course, complete vindication of my claim
will hang on demonstrating the match between particular astrophysical systems and
the assumptions (boundary conditions and so on) used in any particular H-thoerem.

There are scores of other kinetic equations used in astrophysics and for many
of these one will also find an H-theorem in the literature. And for those that do
not readily admit of an H-theorem, one may also try employing the conjecture
of De Roeck et al. to find an ‘H-theorem’ of sorts. Recall that in Section 3.2 I
described a top–down way of thinking about entropy increase and H-theorems.
Imagine we have some deterministic macroscopic equation of motion, one that
tells us that macro-states such as M1 at t1 will evolve by time t2 into macro-state
M2. We saw that Liouville’s theorem and the claim that (effectively) φt2−t1�M1t1 ⊂
�M2t2 implies that almost all of the points originally in M1 have evolved into the
set corresponding to M2. From this it follows that �M1t1 ≤ �M2t2 and we therefore
have a kind of H-theorem. Whether this strategy is defensible and whether it works
with certain equations in astrophysics are questions that require study. I will not
argue for either here. Presently I merely wish to point out that with the plethora of
macroscopic kinetic equations in the field, there will be many opportunities to try
to employ this strategy.

The picture we have developed, then, is this. We have not calculated the Boltz-
mann entropy including strong gravitational coupling directly, so we do not know
whether it increases or decreases from an initial state like the early cosmological
state. For the reasons discussed in Section 3.3, unless we simplify our system
considerably we cannot show what the Boltzmann entropy of such a state will do.
We have no answer to the main question of this chapter; indeed, displaying this
problem is the main point of the chapter. As mentioned, however, the news is not
all bad. We know that when some large self-gravitating structures in the universe
reach a certain stage of development it becomes appropriate to idealize them as
obeying a gravitational kinetic equation. For some of these equations, and in fact
for some very accurate ones, we can show that the Boltzmann entropy increases.
I have not shown this here, as it is implicit in the literature.14 Moreover, I have

13 Please bear in mind that often these works are not written from the perspective of the Boltzmann viewpoint
used here. To complete all the links mentioned, one sometimes will need to use, for example, the fact that the
Boltzmann entropy is close in value to the Gibbs entropy at equilibrium for large systems, as well as results
from Boltzmann’s original derivation.

14 It may be worth pointing out that the diffusion coefficient in the Fokker–Planck equation causes dispersal in
velocity space. So if we think back to Section 3.3, where we wanted to know what was happening in momentum
space in such systems, we see that these kinetic equations are describing systems whose momenta are getting
more dispersed as time goes on, just as we hoped.
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pointed to the vast range of gravitational kinetic equations in use as a place to
investigate this question further.

To what extent the Boltzmannian program is ultimately successful in the face of
gravity depends on what we hope for and on the empirical facts. The original past
hypothesis covered the entire universe, but this theory will not be vindicated by the
current very limited result. The current move only yields an increasing Boltzmann
entropy in regimes appropriately described by a gravitational kinetic equation. For
instance, the Fokker–Planck regime only lasts when the system is weakly coupled.
The whole universe is certainly not such a regime. If one hopes for a Boltzmann
entropy for the universe, this avenue cannot meet this goal. Also, if one wanted to
tackle the problems of extensivity et al. head-on, we have not done that here either.
By going to a regime where a mean force is used, even where close encounters
are considered to some extent, we may be accused of ignoring the problem of
extensivity rather than addressing it.

Yet if one has more modest expectations, one has encouraging news. What is
perhaps the best kinetic equation incorporating gravitational effects generates the
increase of Boltzmann entropy. The natural reconstruction of the past hypothesis
is as the claim that the early states of (e.g.) Fokker–Planck regimes are of very
low Boltzmann entropy compared to now. The pressing empirical question for this
approach is whether we are in such a regime and if so how big it is and how many
there are.15

This picture, it must be said, bears some similarity to the ‘branch’ systems
approach to statistical thermodynamics. Reichenbach’s (1999) branch hypothesis is
the claim that thermodynamics applies only to quasi-isolated macroscopic ‘branch’
systems. Thermodynamics does not apply to the universe as a whole on this view,
but only to certain systems when they become sufficiently isolated from the rest of
the world. Historically, one objection to this picture is that it is not at all clear what
‘sufficiently isolated’ could possibly mean. See Albert (2000: 88–89) for a forceful
statement of this objection, among others. Here I just want to note that the proposal
under review is not guilty of this mistake, at least on one reading. The criterion
of whether a system fits the assumptions underlying the use of a Fokker–Planck
equation is quite clear. The identification of branches can proceed without too much
difficulty. The larger problem, also mentioned by Albert, of whether one has any

15 Actually, probably more of the action will come in looking at the level of detail – i.e. the choice of
macro-states – than simply the size of the system. For instance, our galaxy, the Milky Way, has approximately
N = 1010 stars in it and a ‘crossing time’ of 108 yr, making stellar close encounters a relatively unimportant
part of its evolution. This means the Vlasov equation is a good description of our galaxy. This equation, recall,
provides no entropy increase. However, that does not mean that if one wants to look at more fine-grained
structure in our galaxy one cannot use the Fokker–Planck equation, an equation from which one can derive
entropy increase. And that does not mean that one cannot also enlarge the scale and use the Fokker–Planck
equation to describe the dynamics of clusters of galaxies, with N = 103, which may include the Milky Way.
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right to impose a uniform probability distribution over the ‘first’ such state when
we know it has evolved from previous states lingers, however, and demands further
thought (for a little in this direction, see Callender, 2010).

In sum, I hope to have shown how the inclusion of gravity into the Boltzmannian
account of the direction of time is highly ambitious but also non-trivial. After
sketching the serious problems with gravity, I made plausible a sketch of how one
can obtain an increasing Boltzmann entropy in self-gravitating systems described
by certain types of gravitational kinetic equations. Further work is needed to judge
whether this kind of approach is best, but I do hope it removes some of the pessimism
one might (reasonably) have about Boltzmann’s non-equilibrium framework in the
presence of gravitation.16
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4

Quantum gravity and the arrow of time

claus kiefer

4.1 Arrows of time

Although most fundamental laws of physics do not distinguish between past and
present, there exist classes of phenomena in Nature that exhibit a direction of time:
their time-reversed versions, although in perfect accordance with the underlying
laws, are under ordinary conditions never observed. Arthur Eddington called such
classes ‘arrows of time’, see Zeh (2007) for a detailed overview. The main arrows
of time are the following:

� radiation arrow (advanced versus retarded radiation);
� second law of thermodynamics (increase of entropy);
� quantum theory (measurement process and emergence of classical properties);
� gravitational phenomena (expansion of the universe and emergence of structure by grav-

itational condensation).

The expansion of the universe is distinguished because it does not refer to a class
of phenomena; it is a single process. It has therefore been suggested that it is the
common root for all other arrows of time – the ‘master arrow’. As will become
clear below, this does indeed seem to be the case.

The radiation arrow is distinguished by the fact that fields interacting with local
sources are usually described by retarded solutions, that is, solutions which in
general lead to a damping of the source. Advanced solutions are excluded; they
would describe the reversed process, during which the field propagates coherently
towards its source, leading to its excitation instead of damping. This holds, in
fact, for all wave phenomena – a stone thrown into a pond will produce outgoing
waves, but the time-reversed version of coherently ingoing water waves ejecting
out a stone from the pond is never observed, although it would correspond to a
valuable solution of the wave equation. In electrodynamics, a solution of Maxwell’s
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equations can be specified by

Aµ = source term plus boundary term

= A
µ
ret + Aµ

in = A
µ

adv + A
µ
out

where Aµ is the vector potential. The important question is then why the observed
phenomena obey Aµ ≈ A

µ
ret or, in other words, why

Aµ
in ≈ 0 (4.1)

holds instead of A
µ
out ≈ 0. Equation (4.1) is called a ‘Sommerfeld radiation

condition’.
Today the radiation arrow of time is understood as a consequence of the second

law of thermodynamics: due to the absorption properties of the material which
constitutes the walls of the laboratory in which electrodynamic experiments are
being performed, ingoing fields will be absorbed within a very short time and (4.1)
will be fulfilled. But for the thermal properties of absorbers, the second law is
responsible.

The condition (4.1) also seems to hold for the universe as a whole (‘darkness
of the night sky’). The so-called Olbers’ paradox, according to which one should
expect a bright night sky arising from infinitely many stars in an eternal universe,
can be solved by noting that the universe is, in fact, not static, but has a finite
age and is much too young to have enough stars for a bright night sky. This is,
of course, not yet sufficient to understand the validity of (4.1) for the universe as
a whole. In an early stage the universe was a hot plasma in thermal equilibrium.
It is the expansion of the universe and the ensuing redshift of the radiation which
are responsible for the fact that radiation has decoupled from matter and cooled
to its present value of about three Kelvin – the temperature of the approximately
isotropic cosmic background radiation with which the night sky ‘glows’. During
the expansion a strong thermal non-equilibrium could develop, which then enabled
the formation of structure.

The second arrow concerns the second law of thermodynamics: for a closed
system, entropy does not decrease. The total change of entropy is given by

dS

dt
=

(
dS

dt

)
ext︸ ︷︷ ︸

dSext=δQ/T

+
(

dS

dt

)
int︸ ︷︷ ︸

≥0

so that according to the second law the second term is non-negative. As the increase
of entropy is also relevant for physiological processes, the second law is responsible
for the subjective experience of irreversibility, in particular for the aging process. If
applied to the universe as a whole, it would predict the increase of its total entropy,
which would seem to lead to its ‘heat death’ (Wärmetod).
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The laws of thermodynamics are based on microscopic statistical laws which
are time-symmetric. How can the second law be derived from such laws? Certainly,
purely statistical arguments are insufficient, since for each microscopic process its
time-reversed version would exist with the same a priori probability. In fact, the
highest probability would belong to a system in its thermal equilibrium state.

The second law can be derived using statistical reasoning only if a special
boundary condition of low entropy in the past is imposed. Such a boundary con-
dition must either be postulated from the outset or derived from a fundamental
theory. Formally the increase of entropy is then described by ‘master equations’,
see, for example, Joos et al. (2003). These are equations for the ‘relevant’ (coarse-
grained) part of the system. In an open system, the entropy can, of course, decrease,
provided the entropy capacity of the environment is large enough to at least com-
pensate this decrease. This is crucial for the existence of life, and a particular
efficient process in this respect is photosynthesis. The huge entropy capacity of the
environment comes in this case from the high temperature gradient between the
hot Sun and the cold empty space: few high-energy photons (with small entropy)
arrive on Earth, while many low-energy photons (with high entropy) leave it,
see, for example, Penrose (1990). Therefore, also the thermodynamic arrow of
time points towards cosmology: How can gravitationally condensed objects like
the Sun form in the first place? Already Ludwig Boltzmann had, towards the
end of the nineteenth century, speculated that the second law has its origin in
cosmology.

There is also an arrow of time in quantum mechanics. The Schrödinger equation
is time-reversal invariant, but the measurement process, either through a dynamical
collapse of the wave function, or an Everett branching, distinguishes a direction.
Growing entanglement with other degrees of freedom leads to decoherence: the
irreversible emergence of classical properties for a local system through interaction
with its environment (Joos et al., 2003). A particle trajectory in a bubble cham-
ber, for example, emerges through the interaction with the atoms in the chamber.
Independent of whether a real collapse of the wave function exists or not, decoher-
ence readily explains the occurrence of an ‘apparent’ collapse as it is observed in
experiments. Information about quantum-mechanical superpositions is delocalized
into correlations with the inaccessible environment and no longer available at the
system itself. Decoherence is described quantitatively through the dynamics of
a reduced density matrix which is obtained from the total system by integrating
out the environmental degrees of freedom. It obeys a master equation. The local
entropy increases during the emergence of entanglement with the environment.
Again, decoherence only works if a special initial condition – a condition of weak
entanglement – holds. But where can such a condition come from? We shall discuss
a possible answer below.
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The last of the main arrows is the gravitational arrow of time. Although the
Einstein field equations are time-reversal invariant, gravitational systems in Nature
distinguish a certain direction: the universe as a whole expands, while local sys-
tems such as stars form by contraction, for example from gas clouds. It is by this
gravitational contraction that the high temperature gradients between stars such
as the Sun and the empty space arise. Because of the negative heat capacity for
gravitational systems, homogeneous states possess a low entropy, whereas inho-
mogeneous states possess a high entropy – just the opposite behaviour than for
non-gravitational systems.

An extreme case of gravitational collapse is the formation of black holes. Accord-
ing to general relativity, their gravitational field is so strong that nothing, not even
light, can escape. In spite of this, they possess fundamental thermodynamical prop-
erties (temperature and entropy) which are connected with their event horizon. The
time-reversed versions of black holes, the so-called white holes, do not seem to
exist in our universe. Temperature and entropy of a black hole exhibit their mean-
ing if quantum theory is taken into account: according to the Hawking effect (see
e.g. Kiefer (1999) for a detailed review), a black hole radiates with the Hawking
temperature, TH, which is proportional to the quantum of action h̄. In the simplest
case of a Schwarzschild black hole which is fully characterized by its mass, M, it
reads

TH = �c3

8πGkBM
≈ 6.2 × 10−8 M�

M
K (4.2)

where c is the speed of light, G the gravitational constant, kB Boltzmann’s constant,
and M� the solar mass.

Connected with this temperature is the Bekenstein–Hawking entropy, SBH, which
is proportional to the area, A, of the black-hole horizon,

SBH = kB
Ac3

4G�

Schwarzschild≈ 1.07 × 1077kB

(
M

M�

)2

(4.3)

One can estimate from this entropy formula that the universe would be in a state
of maximal entropy if all the observable matter were in the form of a single black
hole (Penrose, 1990). Since the universe is far away from such a state, it must
have been started with a very special initial condition. This would then be the
desired boundary condition of low entropy mentioned above. Can this situation be
analysed further? Close to the big bang, the classical theory of general relativity
breaks down. It is most likely that a quantum theory of gravity must be invoked to
describe this early phase, so to investigate this issue further one must address the
field of quantum gravity.
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4.2 Quantum gravity

There are many reasons why one should expect a quantum theory of gravity to
supersede general relativity at the fundamental level (Kiefer, 2007). Perhaps the
most important argument is the existence of singularity theorems indicating the
breakdown of the classical theory at the big bang, the interior of black holes, and
other regions (see below). Another important problem pointing towards an encom-
passing new theory is the problem of time: whereas time in ordinary quantum
theory is non-dynamical, it is dynamical in general relativity, since it is part of
spacetime obeying the Einstein equations. Both theories can thus not simultane-
ously be exactly correct.

The task of quantizing gravity has not yet been accomplished, but approaches
exist within which sensible questions can be asked. Currently the two main
approaches are: superstring theory (or M-theory) and quantum general relativ-
ity. Superstring theory is more ambitious and aims at a unification of all interac-
tions within a single quantum framework. Quantum general relativity, on the other
hand, attempts to construct a consistent, non-perturbative, quantum theory of the
gravitational field on its own. This is done through the application of standard
quantization rules (canonical methods, path integral methods, . . . ) to the general
theory of relativity. A comprehensive review of these approaches can be found in
Kiefer (2007).

In the following discussion I shall restrict myself to the canonical theory, and
in particular to the version in which the metric plays the central role (‘quantum
geometrodynamics’). Another version of current interest is ‘loop quantum grav-
ity’ in which the fundamental variable is a ‘holonomy’ that contains the integral
of a ‘vector potential’ along a one-dimensional curve. While technically being
more involved, the conceptual situation with respect to time is similar to quantum
geometrodynamics (Rovelli, 2004).

What are the central equations of canonical quantum gravity? Since the classical
theory (general relativity) possesses certain invariance properties (invariance with
respect to coordinate transformations), it contains constraints. These are equations
without second time derivatives. Because one has the freedom to choose four
coordinates locally, there are four constraints at each space point. I shall not go
into any details here (see Kiefer, 2007). The important fact is that the central
equation, which is called the Wheeler–DeWitt equation, has the form of a zero-
energy Schrödinger equation,

Ĥ	[hab, ϕ] = 0 (4.4)

where Ĥ denotes the total Hamilton operator of both gravitational and non-
gravitational degrees of freedom. The gravitational part is represented by the
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three-dimensional metric, hab, and the non-gravitational part is, for simplicity,
represented by a scalar field ϕ. The Wheeler–DeWitt equation has various charac-
teristic features:

� it depends on the three-dimensional metric, but is invariant under coordinate transforma-
tions, so it depends, in effect, only on the three-dimensional geometry;

� it does not contain any time parameter and is thus of a ‘timeless nature’ at the most
fundamental level;

� its general form follows from any theory which classically is time-reparametrization
invariant;

� it is (locally) hyperbolic and thereby defines a concept of an ‘intrinsic time’ which has
to be constructed from the spatial metric itself (and the matter degrees of freedom).

Spacetime as a classical concept has thus disappeared. How can this be under-
stood? In classical canonical gravity, a spacetime can be represented as a ‘tra-
jectory’ in configuration space – the space of all three-metrics. Although time
coordinates have no intrinsic meaning in classical general relativity either, they can
nevertheless be used to parametrize this trajectory in an essentially arbitrary way.
Since no trajectories exist anymore in quantum theory, no spacetime exists at the
most fundamental level, and therefore also no time coordinates to parametrize a
trajectory.

In its most general form, (4.4) is not amenable to a mathematical treatment. For
the following discussion it is, however, sufficient to turn to simple models. The
Wheeler–DeWitt equation (4.4) can be greatly simplified if most of the degrees
of freedom are frozen out already at the classical level and only few variables
are quantized. A particular important example is the case of a homogeneous and
isotropic universe. This is characterized classically by its scale factor (‘radius’)
a(t). If, in addition, a homogeneous scalar field, classically described by φ(t), is
taken into account, one arrives effectively at a two-dimensional model. In quantum
gravity, then, the wave function in (4.4) becomes a function of a and φ and is
denoted by ψ(a, φ). Recall that the classical time parameter t has disappeared
in the quantum theory, so no additional t appears as an argument in the wave
function.

If one has, for example, a massive scalar field with mass m coupled to a closed
Friedmann universe, (4.4) is of the form (in suitable units where � = c = G = 1)(

a2 ∂2

∂a2
+ a

∂

∂a
− ∂2

∂φ2
− a4 + m2φ2a6

)
ψ(a, φ) = 0 (4.5)

One recognizes explicitly the hyperbolic (‘wave’) nature of this equation from
the indefinite nature of the kinetic term. Since t has disappeared, boundary
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conditions have to be formulated with respect to the configuration variables of
the Wheeler–DeWitt equation, which are in this model given by a and φ. Since
this equation is hyperbolic with respect to a,1 a can play the role of an ‘intrin-
sic time’ with respect to which boundary conditions can be imposed in a proper
way.

This new concept of time has drastic consequences if one wants to describe a
classically recollapsing universe in quantum gravity, see Kiefer (1988) and Kiefer
and Zeh (1995). Both big bang and big crunch correspond to the same region
in configuration space – the region of a → 0. They are thus intrinsically indistin-
guishable. The Wheeler–DeWitt equation connects larger scale factors with smaller
scale factors, but not the two ends of a classical trajectory (which is absent in the
quantum theory). If one wants to mimic the classical trajectory by a ‘recollapsing’
wave packet, one has to include both the ‘initial’ and the ‘final’ wave packet into
one initial condition with respect to a. If one of the two packets were lacking,
one would not be able to recover the classical trajectory as an approximation.
It also turns out that it is in general not possible to construct a narrow wave
tube all along the trajectory corresponding to a recollapsing universe – a disper-
sion in certain regions is unavoidable. Therefore, a semiclassical approximation
is not valid all along the trajectory and quantum effects can play a role even far
away from the Planck scale – for example at the turning point of the classical
universe.

Macroscopic quantum effects in cosmology can also occur in models that clas-
sically contain a singularity for a large universe. Such singularities can be a ‘big
rip’, in which the universe expands to an infinite size in a finite time, or a ‘big
brake’ in which the universe comes to an abrupt halt (with infinite deceleration) in
the future. The corresponding quantum theories have been discussed in Da̧browski
et al. (2006) (‘big rip’) and in Kamenshchik et al. (2007) (‘big brake’). It turns out
that they can be formulated in a singularity-free way. However, quantum effects
turn over at the place of the classical singularities, which means that the classical
evolution comes to an end and time, together will all classical observers, stops to
exist, too.

If one, alternatively, uses loop quantum gravity as the starting point, one will
arrive at the framework of loop quantum cosmology, see, for example, Bojowald
(2006). Near the Planck scale, the Wheeler–DeWitt equation becomes a difference
equation that could entail the possibility of avoiding the classical singularity in the
quantum theory. The full consequences of this approach for the concept of time
remain to be explored.

1
This becomes evident if further degrees of freedom are added; they all occur with the same sign as φ in the
kinetic term.
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4.3 Low-entropy condition from quantum gravity

As we saw in the previous section, the fundamental equation of canonical quantum
gravity does not contain any time parameter. The same holds for string theory.
How, then, can one derive a direction of time if there is no time in the first place?

The answer involves two steps. The first step consists in the recovery of an
approximate time parameter from the timeless Wheeler–DeWitt equation (4.4).
This is achieved through a Born–Oppenheimer type of approximation scheme
(Kiefer, 2007). If one makes for particular solutions of (4.4) the ansatz

	[hab, ϕ] = eiS[hab]/G�[hab, ϕ] (4.6)

it turns out that to highest order in an expansion with respect to the gravitational
constant, the functional S[hab] obeys the gravitational Hamilton–Jacobi equations,
which are equivalent to the classical Einstein equations. Solutions of these equations
define a semiclassical background spacetime. The wave functional �[hab, ϕ] then
obeys – in the next order in G – a functional Schrödinger equation in which the
time t is defined through this approximate background,

i�
∂

∂t
�(t, ϕ] = Ĥ mat�(t, ϕ] (4.7)

where Ĥmat denotes the non-gravitational part of the total Hamiltonian. This is the
limit of quantum field theory in an external spacetime. In cosmological models (cf.
the previous section) the semiclassical time t is usually correlated with the scale
factor a.

The second step in the search for an arrow of time seeks an answer to the
question: how can a direction of this semiclassical time emerge? It is a property of
the full Wheeler–DeWitt equation – and already recognizable in the simple model
(4.5) – that the potential term is asymmetric with respect to intrinsic time. In fact,
the potential becomes very simple for a → 0, approximately separating between
all variables. One can thus impose an initial condition of lacking entanglement
between the various degrees of freedom, that is, one can impose the condition

	
a→0−→ f (a)

∏
i

χi(xi) (4.8)

where xi is a formal notation for all variables except a and the χ i are the cor-
responding wave functions (Zeh, 2007). With this initial condition near the ‘big
bang’, (4.4) yields an increasing entanglement for increasing a because the poten-
tial term couples the various degrees of freedom. For subsystems, this then leads to
an increase of entropy and to increasing decoherence. This increase constitutes the
origin of both the thermodynamical arrow (and, consequently, also the radiation
arrow) and the quantum-mechanical arrow of time. In fact, it becomes clear that all
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arrows are then correlated with the radius of the universe, and that the cosmological
arrow plays the role of the master arrow of time, as expected. The universe can
then only be observed as expanding (Kiefer and Zeh, 1995).

As long as the final theory of quantum theory remains elusive, these consid-
erations are, of course, speculative. They show, however, how one can hope to
understand at least in principle the origin of irreversibility from a fundamental
theory of Nature.
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Part II

Probability and chance





5

The natural-range conception of probability

jacob rosenthal

5.1 Objective interpretations of probability

Objective interpretations claim that probability statements are made true or false
by physical reality, and not by our state of mind or information. The task is to
provide truth conditions for probability statements that are objective in this sense.
Usually, two varieties of such interpretations are distinguished and discussed:
frequency interpretations and propensity interpretations. Both face considerable
problems,1 the most serious of which I will briefly recall to motivate the search for
an alternative.

Firstly, the frequency interpretations. Here the central problem is that it is very
implausible (to say the least) to postulate a non-probabilistic connection between
probabilities and relative frequencies. What a frequency approach claims seems
either to be false or to presuppose the notion of probability. Take, for example, the
repeated throwing of a fair die that has equal probabilities for each side. All you
can say is that it is very probable that upon many repetitions each face will turn
up with a relative frequency of approximately 1/6 (weak law of large numbers).
Or that, with probability 1, the limiting relative frequency of each face would be
1/6 in an infinite number of repetitions (strong law of large numbers). You cannot
drop the clauses ‘very probable’ or ‘with probability 1’ in these statements. There
are no relative frequencies that the die would produce on repeated throwing, but it
could, with varying probabilities, yield any frequency of a given outcome. This is
not only clear from the standard mathematical treatment, according to which the
throws are probabilistically independent, but one should expect it from the outset.
After all, a chance experiment is repeated, so it should be possible to get the same

1 Hájek (1997, 2009) gives a comprehensive list of those problems for frequency accounts, Eagle (2004) does
the same for propensity accounts of probability.
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result over and over again.2 The idea of repeating a random experiment does not fit
together with the claim that certain relative frequencies would or have to emerge.
So, you cannot use the connection between probabilities and relative frequencies
for an interpretation of the former. Any such connection is itself probabilistic and
given by the laws of large numbers, which cannot plausibly be strengthened. Nor
will it do to give a different interpretation to those second-order probabilities. They
arise from a combination of the first-order probabilities, and thus there is no reason
for interpreting them in another way.

Second, in the so-called single-case propensity theories, the entities called
‘propensities’ are supposed to be fundamental entities in Nature which somehow
attach to individual physical processes and make their different possible outcomes
more or less probable. So, propensities are, or create, irreducible objective single-
case probabilities. But this implies that they constrain rational credence, because
otherwise the term ‘probability’ would be misplaced. Propensities yield the appro-
priate degrees of belief. There is no account of how they might be able to achieve
this, they constrain rational credence ‘just so’. They are assumed to be normative
parts of reality, and their normativity is to be taken as a brute fact. If one tries to
avoid this oddity by explicating propensities in terms of relative frequencies, one
is saddled again with the central problem of the frequency approach. The so-called
long-run propensity theories are actually varieties of the frequency interpretation
and share most of its features and problems, whereas the single-case approaches
do not have much to say about probabilities. They just say that there are entities
out there which somehow adhere to single events and give us appropriate degrees
of belief. This austere fact is concealed by the introduction of various new notions,
like ‘disposition of a certain strength’, ‘weighted physical possibility’, ‘causal link
of a certain strength’ or even ‘generalized force’. ‘Propensity’ is one of these terms,
too, which are in greater need of explication than ‘probability’ itself, and the expli-
cation of which inevitably leads back to the very concept of probability they are
supposed to explain.

In view of these difficulties it does not seem superfluous to look for yet another
objective interpretation of probability. And in fact there is a third, not actually
new but to a large extent neglected, possibility for such an interpretation: namely,
probabilities as deriving from ranges in suitably structured spaces of initial states.
To put it very briefly, the probability of an event is the proportion of those initial
states within the initial-state space attached to the underlying random experiment
which lead to the event in question, provided that the space has a certain structure.

2 As usual in discussions of probability, I use the term (chance or random) ‘experiment’ and related notions like
‘experimental arrangement’ in a wide sense throughout, standing for ‘in principle repeatable physical process or
constellation’. It is not just to be thought of experiments that are or can be conducted by human experimentators.
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I will call this the ‘range interpretation’ of probability statements. It was already
proposed by Johannes von Kries, by the end of the nineteenth century, in his
comprehensive book Die Principien der Wahrscheinlichkeitsrechnung (von Kries,
1886, 2nd printing 1927). Where I will use the term ‘range’, von Kries spoke about
‘Spielraum’, which could also be translated as ‘leeway’, ‘room to move’, or ‘play
space’.3 I will present this interpretation by making a brief detour through the
classical conception of probability, to which it is related.

5.2 From the classical interpretation to the range interpretation

According to the well-known classical conception (CC), the probability of an event
is the ratio of ‘favourable’ (with regard to the event in question) to ‘possible’ cases,
where those possible cases must be ‘equally possible’ and are judged so by the
‘principle of indifference’ or ‘principle of insufficient reason’:

(CC) Let E be a random experiment. On every trial of E exactly one of the cases
a1, a2, . . . , an is realized. If we do not see (subjectivist reading) or there is not
(objectivist reading) any reason why ai should occur rather than aj for each i, j,
then the cases a1, a2, . . . , an are equally possible. If exactly k of them lead to the
event A, then the probability of A on a trial of E is k / n.

This classical conception, which originated with the invention of the calculus of
probabilities by Fermat and Pascal in the seventeenth century and culminated with
Laplace, was abandoned in the course of the nineteenth century due to the fol-
lowing difficulties: first, equally possible cases are not always to be had, i.e. the
principle of insufficient reason is not always applicable. Second, the opposite prob-
lem: sometimes there are different types of equally possible cases, i.e. the principle
of insufficient reason is applicable in different ways which lead to contradicting
probability ascriptions (Bertrand’s paradoxes). Third, since ‘equally possible’ can
mean nothing but ‘equally probable’, the classical interpretation provides no anal-
ysis of probability, but presupposes the concept. As will become clear, the range
interpretation is able to overcome the first and the second problem. The third one
proves harder and will turn out to be a touchstone for success or failure of the range
approach.

Now, for example, in how far are the six sides of a symmetric die ‘equally
possible’ upon throwing? In how far is there not any reason (remember we are
interested in an objectivist reading of the principle of insufficient reason) why one
side should turn up rather than another? In how far is it equally easy to get a
certain number a as the outcome and to get any other number? Take the outcome

3 See Heidelberger (2001).
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of a throw to be determined by its initial conditions. These can be represented
by a vector of real numbers, which characterize things like the position of the
die in space, its velocities in the different directions, its angular velocities in the
different directions, etc., at the very beginning of its flight. Call any such vector,
which represents a complete selection of initial conditions, an initial state. Thus,
for some n, the n-dimensional real vector space Rn, or a suitable subspace of it, can
be viewed as the space of possible initial states for a throw of the die. Each point
in the initial-state space S fixes the initial conditions completely, and thus fixes
a certain outcome of the throw. Here it is assumed that other conditions, which
one could call ‘boundary conditions’, remain constant. These include the physical
properties of the die and of the surface onto which it is thrown, the air pressure and
temperature and other things like that. The difference between initial and boundary
conditions is made in order to distinguish varying factors from constant ones. If,
e.g., the air pressure might change from one throw to the next, it would also have
to be included among the initial conditions. Strictly speaking, we would then face
a different random experiment with a different initial-state space, but, at least in
ordinary cases, with the same outcome probabilities.

If we could survey the initial-state space, we would find it consisting of very
small patches where all the initial states contained lead to the same outcome. In
the neighbourhood of a patch associated with the number a as outcome we would
find patches of approximately equal size leading to any other number. Therefore,
the outcome a is represented with a proportion of approximately 1/6 in any not-
too-small segment of S. Without loss of generality, we can lay down this condition
for intervals: Let Sa ⊆ S be the set of those initial states that lead to outcome a.
Let I ⊆ S be an interval. Let µ be the standard (Lebesgue-) measure. If I is not too
small, we will find that

µ (I ∩ Sa)

µ(I)
≈ 1/6

The proportion of initial states that lead to outcome a in an arbitrary, not-too-small
interval I of the initial-state space is about 1/6.

A loaded die can obviously be treated in exactly the same manner, i.e. the
approximate probabilities attached to its sides can be found in any not-too-small
segment of the space of initial states as the proportion of those initial states in that
segment which lead to the respective outcome. This already overcomes the first
shortcoming of the classical interpretation. The structure of the initial-state space
explains the typical probabilistic patterns that emerge on repeated throwing of the
die: why it is impossible to predict the outcome of a single throw, on the one hand,
and why the different outcomes occur with certain characteristic frequencies in the
long run, on the other hand. Of course, I have not shown that the initial-state space
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associated with the throwing of a certain die has the sketched structure. This would
be a very demanding task. I have to assume that it is possible in principle to do
so, using only classical mechanics, and hope that the reader finds this assumption
plausible.

5.3 The natural-range interpretation of probability

The basic idea underlying the range conception is as follows: When we observe
a random experiment that gives rise, on repetition, to probabilistic patterns, it is
often plausible to suppose, as I did with the die, that this phenomenon can be
attributed to an initial-state space with a structure of the indicated kind. On the one
hand, in any (not too) small vicinity of an initial state leading to a given outcome a
there are initial states leading to different outcomes, which explains why the out-
come of a single trial cannot be predicted. On the other hand, for each outcome,
the proportion of initial states leading to it is constant all over the initial-state
space, i.e. it is approximately the same in any not-too-small segment of the space,
which explains why there are certain stable characteristic relative frequencies with
which the different outcomes occur. We cannot use those frequencies to define
the probabilities of the respective outcomes – remember the main objection to
frequency interpretations – but we can use the underlying initial-state space to
do so.

Before setting up the definition, however, we have to specify the requirement that
a certain outcome a is represented with approximately the same proportion in any
not-too-small segment of the initial-state space. This proves a bit tricky, because
if we demand too much here, the applicability of the range interpretation will be
unnecessarily restricted, whereas if we demand too little, certain mathematically
desirable features of the range approach are lost. First, we have to presuppose
that the initial-state space S, as well as the set Sa ⊆ S of those initial states that
lead to the outcome a, are Lebesgue-measurable subsets of Rn (for some n) of
maybe infinite size. More precisely (to avoid problems with infinity), we assume
that the intersection of S or Sa with any bounded measurable subset of Rn is again
measurable. Second, we look at those measurable subsets of S whose size exceeds
a certain minimum; let us call them ‘not too small’ from now on. We certainly
cannot assume that a is approximately equally represented in any such set, because
Sa is itself one of these sets. A natural idea is to stick to bounded and connected
measurable sets, or areas. As any area can be approximated by (n-dimensional)
intervals, we could, without loss of generality, set up the proportion-condition for
intervals. Unfortunately, even this proves too strong. Imagine a random experiment
with a two-dimensional initial-state space, such that the ‘patches’ the space consists
of are extremely narrow but potentially infinitely long stripes. As the stripes are
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so narrow, the range conception of probability should be applicable, but as they
are at the same time very long, there are quite large intervals within which all
initial states give rise to the same outcome. So it seems that we ought to be even
more restrictive and consider only cube-shaped or equilateral intervals. This is
somewhat inelegant, but in this way we are able to capture exactly those cases in
which the range approach is intuitively applicable, without giving up too much of
the generality of the proportion-condition. Now we are in a position to state the
range conception (or interpretation, or definition) of probability, (RC).

(RC) Let E be a random experiment and a a possible outcome of it. Let S ⊆ Rn

for some n be the initial-state space attached to E, and Sa ⊆ S be the set of those
initial states that lead to the outcome a. Let µ be the standard (Lebesgue-) measure.
If there is a number p such that for any not-too-small n-dimensional equilateral
interval I ⊆ S, we have

µ (I ∩ Sa)

µ(I)
≈ p

then there is an objective probability of a upon a trial of E, and its value is p.

This is the first formulation of the range conception. It would be more accurate to
speak of the ‘physical-’ or ‘natural-range conception’ (see comment K below), but
I will stick to the short term. A second formulation of this approach to probabilities
will be given in the next section, using so-called ‘arbitrary functions’. Before
turning to that, I am going to make several comments on (RC).

(A) The range approach is meant to be a proposal for an objective interpretation of
probability statements, i.e. as providing truth conditions for such statements
that do not depend on our state of mind or our state of information and
are therefore called ‘objective’. The interpretation is reductive: probability is
analysed in non-probabilistic terms. The axioms of the calculus of probability
immediately follow from the definition, if one takes a small idealizing step
and reads the approximate equation as an exact one. The central problem
of frequency interpretations is avoided, because the relative frequency of a
given outcome may, upon repetition of the random experiment, deviate as
much as you like from the proportion with which the outcome is represented
within the initial-state space. Such an event is not excluded, merely very
improbable. Many of the problems of frequency approaches can be traced
back to the confusion of assertibility conditions with truth conditions. What
makes a statement about an objective probability true is not the frequencies
that will or would arise or have arisen, but what explains those frequencies –
in a probabilistic way, using the laws of large numbers. The statement is made
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true by the physical circumstances that give rise to the typical probabilistic
pattern. The range approach claims to spell out what those circumstances are.

(B) Second-order probabilities of the kind just mentioned, as they occur in the
laws of large numbers, can also be given a range interpretation in a natural
way. Considering k independent repetitions of E as a new, complex random
experiment Ek, the initial-state space attached to this new experiment is just
the k-fold Cartesian product – call it Sk – of S with itself. The probabilities of
the possible outcomes of Ek are the proportions with which these outcomes
are represented in Sk. Therefore, if the probabilities in a random experiment
admit of a range interpretation, so do the probabilities associated with inde-
pendent repetitions of the experiment, and the respective ranges are connected
in a straightforward way. I will not discuss the problems connected with the
notion of independence, in particular the very important question of how to
justify the stochastic independence of different repetitions of E, but refer the
reader to Strevens (2003: ch. 3). Suffice it to say that the independence of
the range probabilities need not be taken for granted, or simply assumed, but
can be explained in much the same way as the existence of the probabilities
themselves. It is a virtue of the approach that the question concerning the
source of the objective probabilities and the one concerning the source of their
independence on repeated trials admit of largely parallel answers.

(C) The range interpretation works only in deterministic contexts, where the out-
come of a chancy process is determined by initial conditions.4 This means that
terms like ‘random experiment’ or ‘chance process’ cannot be taken in a hard
realist sense. What is random or chancy in this sense depends on our epistemic
and computational abilities. So, according to the range interpretation, that
there are probabilities depends on us, but what they are depends on the world.
The structure of an initial-state space of the required kind, and in particular
the proportions with which the various outcomes are represented within it, is
perfectly objective. It only depends on the laws of Nature and the dynamics of
the process in question, but not on our state of mind or information. But that
we call those proportions ‘probabilities’, and call the underlying experiment
a ‘random’ or ‘chance experiment’, is dependent on the epistemic and control
capacities we possess (or are willing to exercise). There is an epistemic aspect
to range probabilities, but this aspect does not concern their value. It concerns
the fact that certain experiments are considered to be random or chancy.

4 One could try to generalize the approach by considering processes in which an initial state does not fix an
outcome, but only a probability distribution over the possible outcomes. But this distribution would have to
be interpreted in turn, and if this were done according to the range approach, one could in principle eliminate
these probability distributions by moving to another, higher-dimensional initial-state space. Therefore, the range
approach is indeed restricted to deterministic contexts, or else becomes dependent on a different interpretation
of probability.
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(D) There is a reservation to the range conception that may be addressed in con-
nection with the example of a loaded die. One might speculate that with a die
which is, e.g., biased in favour of ‘six’, we do not get the same proportion of
‘six’ all over the initial-state space, but that this proportion increases when the
die is thrown higher above the surface. If anything of this kind were true, there
would neither be a characteristic relative frequency of ‘six’ to be explained, nor
an objective probability of this outcome. We would still face a random exper-
iment with an initial-state space, to be sure, but we could not attach objective
probabilities to the possible outcomes – at least not in the usual sense of point
values. To get objective probabilities proper, we would have to constrain the
method of throwing by demanding that the die is thrown in a certain fixed dis-
tance to the surface. What could rightly be said, however, is that the objective
probability of ‘six’ in the original random experiment is greater than 1/6. I do
not think that suchlike occurs with a loaded die, but random experiments of
this kind certainly exist. In these cases, the range approach does not provide
definite, point-valued objective probabilities – even abstracting from the fact
that (RC) merely states an approximate equality – nor are there any to be had.
We may, however, get intervals for objective probabilities. It should not be too
surprising that there may be random experiments which in this way give rise
to interval-valued objective probabilities.

(E) The definition (RC) is vague in two respects: The proportion of initial states
leading to outcome a is approximately equal to p in any not-too-small cubic
interval of the initial-state space S. This is somewhat unsatisfactory; the first
vagueness, in particular, has the consequence that range probabilities do not
have exact point values. These are rather chosen for mathematical convenience.
The ideal case would be the truly chaotic limiting case in which for every

equilateral interval I we have
µ (I ∩ Sa)

µ(I)
= p exactly. This never occurs in

reality, but often it is convenient to model chancy situations as if this were
true. We approach the limiting case, for example, if in the throwing of a
die we consider only throws that are made high above the surface with high
initial angular velocities. That a situation appears chancy to us at all is due
to the fact that it approximates the limiting case sufficiently; how good the
approximation must be depends again on our epistemic and control abilities.
They determine what the clause ‘not too small’ in (RC) amounts to, i.e. what
is the minimal interval size from which onward the condition is required to
hold.

(F) The range definition of probability stands in-between two more clear-cut pro-
posals. First, just take the proportion of an outcome in the initial-state space as
the probability of this outcome. Do not care how the initial states associated
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with this outcome are distributed over the space. Second, only in the truly
chaotic limiting case do we have objective probabilities. The equation has to
hold exactly for every cube-shaped interval. The first proposal is untenable. If
the objective probability of an event were just its proportion in the initial-state
space, no matter how this space is structured, we would have to ascribe objec-
tive probabilities in cases that are not at all random to us, while in other cases
we would get the wrong probabilities out of this proposal. This is because on
repetition of the random experiment, we cannot expect the initial states that
actually occur to be evenly distributed over the initial-state space. There will
be regions of S that occur more often than others, and we have to guarantee
that this does not influence the probabilities. Therefore, we have to require that
the proportion of the initial states leading to a given outcome is (about) the
same in any (not-too-small) segment of S.

The second proposal is reasonable. One may constrain talk of objective
probabilities to the limiting case. This has two advantages: it is impossible
in principle to influence the probabilities by refinement of our abilities of
measurement, computation and control. Nature may know the outcome in
advance, but we will never know, nor can we improve in any way on the value
p as an expectation whether or not the outcome a will occur on a single trial.
Furthermore, the outcome probabilities are given precise numerical values by
the structure of the initial-state space. The disadvantage, of course, is that
this kind of situation never occurs in reality. But here one may simply say
that many actual situations are very close to the limiting case, i.e. practically
indistinguishable from it for us, given our epistemic capacities. Therefore we
model them accordingly. As reality contains structures that can play the role
of objective probability near enough, the ascription of objective probabilities
is justified in such cases.

(G) We do not get single-case probabilities out of the range approach. The initial-
state space is something attached to a type of random experiment, whereas
in a single trial, there is a definite initial state as well as a definite outcome,
and no more. We neither have several possible outcomes, one of which is
realized, nor an initial-state space, one element of which occurs – after all, a
deterministic context is presupposed throughout. I have used the term ‘ran-
dom experiment’ in the type-sense, as I spoke about repetitions of a given
experiment, and without a notion of the repetition or, equivalently, of the type
of a given process, the talk of possible outcomes or possible initial states
makes no sense. Consequently there is no way to get anything like range
probabilities for a single case considered in isolation. According to the range
approach an objective probability is never single-case, and a single-case prob-
ability requires an epistemic reading. This is not surprising, because objective
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single-case probabilities imply genuine indeterminism. It may be tempting to
regard as indetermined which initial state is realized on a given occasion and
to get objective single-case probabilities in this way, after all. That would also
cut off the problem discussed in the next remark. But this move would make
the occurrence of a particular initial state the outcome of a further, now gen-
uinely indeterministic random experiment, and consequently suggest a further
concept of probability. In order to preserve the point of the range approach,
one has at least to remain agnostic regarding the question whether or not the
occurrence of a certain initial state is itself determined.

(H) The term ‘random experiment’ is used in a broad sense, meaning ‘in-principle-
repeatable physical process’, and exhibiting no particular connection to epis-
temic subjects that are thought to ‘intervene in Nature’. It is therefore a matter
of convention what one picks out as the initial state of a certain process. Take
again the throwing of a die. The outcome is determined by initial conditions,
but why take as initial conditions various physical parameters at the moment
when the die leaves the gambler’s hand? Why not go further back in time and
look, e.g., at the moment when he takes up the die? It seems that one could
as well regard the physical circumstances at that moment, which include a
physical characterization of the gambler’s brain and body, as the initial condi-
tions of the throw. Obviously, there are in principle countless possibilities for
what to take as the initial-state space of the experiment ‘throw of a die with
such-and-such properties under normal circumstances’. Which one gives us
the true probabilities?

In reply to this, one may simply say that these cases amount to several
different random experiments with different initial-state spaces. In specifying
a type of experiment or a type of physical process, one has to specify in
particular what counts as the beginning of the process or experiment. That
cuts off the problem, but at the cost of threatening to completely undermine
the objectivity of probability ascriptions to event types like ‘getting six on a
throw of a symmetric die under normal circumstances’. One can give a more
substantial answer by observing that going further back in time presumably
would not change the probabilities, and making such a feature a requirement for
probability ascriptions according to the range conception. This is von Kries’s
line (1886: ch. 2.3, 2.6). According to him, the ranges in an initial-state space
provide objective probabilities only if they are ‘ursprünglich’ (primordial,
original), which means just that: if one regards earlier states as the initial
states, this does not affect the respective proportions of the outcomes of the
process. To be sure, one gets many different ‘initial’-state spaces for a given
type of process, but always with the same properties with regard to the possible
outcomes. Von Kries also provides arguments to the effect that normally we
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are justified in regarding the state spaces we are inclined to view as initial as
giving rise to primordial ranges.

I leave open which route to take here, since the problem leads into very
deep waters. The easy solution implies that range probabilities are relativized
in the mentioned respect, and it thus becomes difficult to uphold the claim
that they are objective. They depend on a cut in time that is conventionally
made by epistemic subjects. The ambitious solution, on the other hand, seems
to imply that whenever we ascribe objective probabilities to certain events,
we have to make far-reaching assumptions. We have to be able to locate the
‘initial state’ of the process – and with it the relevant state space – arbitrarily
far in the past without changing the probabilities. Even if we are ready to make
such assumptions, however, at some stage we will hit on the initial state of
the universe, and it is doubtful whether talk about an ‘in-principle-repeatable
physical process’ still makes sense then. At this stage, the ‘repetition of the
experiment’ would amount to the creation of a new universe with the same
laws of Nature but, presumably, a different initial state out of the space of
all possible initial states of the universe. And considering this state space,
which no doubt rightly carries the name ‘primordial’, the proportions of the
outcomes would still have to be the same. It would be quite embarrassing if
one were (implicitly) committed to such considerations when ascribing range
probabilities. It may however be the price for full objectivity, and if we are not
prepared to pay it, we may have to be content with a pragmatically reduced
range concept of probability.

(I) In what sense is the range interpretation related to the classical one? One could
say that the former treats the initial states in any small equilateral interval of S
implicitly as ‘equally possible’, because it identifies the probability of a certain
outcome a with the proportion with which a appears in such an interval. One
could interpret this as the implicit supposition of an approximately uniform
distribution over any small cubic interval in S. Therefore, the ‘equally possible’
cases are in a weak sense always to be had, after all: initial states that are near
to one another in S may be said to be treated implicitly as equally possible by
(RC). This already points to the main problem of the range approach, to be
discussed in Section 5.5: as with the classical conception, ‘equally possible’
means nothing but ‘equally probable’ here, so the concept of probability seems
to be presupposed by the range approach. But the approach is applicable to
loaded dice and the like. Furthermore, it does not depend on a subjectively
interpreted principle of indifference and consequently does not fall prey to
Bertrand’s paradoxes. So it can at least overcome the first two problems of
the classical concept. Whether it is able to deal with the third problem, too,
remains to be seen.
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(J) It is also instructive to compare the range interpretation to frequency and
propensity accounts of objective probability. As I said in remark A, frequency
approaches mistake the evidence for objective probabilities for the proba-
bilities themselves. No doubt there is a close connection between objective
probabilities and frequencies: the former can be used to explain and predict
the latter, the latter to infer the former. But all these explanations, predictions
and inferences are probabilistic in themselves, and what makes an objective
probability statement true is not the observed or expected frequency pattern,
but the physical features of the experimental set-up that give rise to this pattern
(in a probabilistic way). Now, it would be quite natural to define objective
probability by saying simply this: the objective probability of an event is that
very feature, whatever it may be, of the experimental set-up that brings about
the characteristic probabilistic or frequency patterns. What Popper and oth-
ers say concerning propensities may be understood along these lines, which
would turn the propensity conception into a very general, but also nearly empty
account of objective probability. Understood in this way, it is not subject to
the above-mentioned criticisms, but it is also uninformative: it says nothing
more than that probability statements refer to such properties of experimental
arrangements that can play the role objective probabilities are supposed to
play. But what can play this role, what features of experimental set-ups can
rightly be called ‘objective probabilities’? We do not yet have an interpretation
of probability, but something more abstract. Given this reading, the propen-
sity conception is, as it were, merely a promissory note that has yet to be
cashed out. The range interpretation can be seen as obtaining this; it makes
a proposal what those features of random experiments are. It is a reasonable
conjecture, put forward by Strevens (2003: ch. 5), that it is precisely such con-
stellations in which probabilistic patterns emerge and in which we can ascribe
objective probabilities to certain events. Other proposals are made by the dif-
ferent propensity conceptions (this term now understood in the specific sense
in which it was discussed at the beginning), notably by single-case theories.
Whereas the range approach takes those features of experimental arrange-
ments which can be identified as probabilities to be complex high-level prop-
erties, single-case propensity theories take them to be simple, irreducible and
fundamental.

(K) As is clear by now, the ‘ranges’ we deal with here are physical or natural ranges.
All examples in which the initial-state space can actually be surveyed come
from physics, but in principle the approach is suited to all empirical sciences, a
point argued for already by von Kries and again by Michael Strevens. What one
needs to apply the range approach is a distinction between initial conditions
and laws. Moreover, the initial conditions have to be viewed as forming a
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real vector space: as will become even clearer in the next section, we are in
the realm of real analysis here. It may be possible to generalize the approach
to more abstract topological (vector) spaces, but a notion of continuity is
indispensable. I emphasize this, because von Kries’s ideas received a rather
one-sided reception. They were taken up by John Maynard Keynes as well as
by the Vienna Circle, notably Friedrich Waismann and Ludwig Wittgenstein,
who both used the term ‘Spielraum’, but gave it a distinctly logical meaning.5

Since then, the term ‘range’, when it occurs in philosophical discussions
of probability, usually refers to logical probabilities. But these face the same
problems as classical ones and are supposed to be a priori and uniquely singled
out by requirements of rationality. As is clear by now from the heroic attempts
of Rudolf Carnap, there is nothing of this kind to be had. One gives away
the potential of von Kries’s ideas if one develops them only in the direction
of a logical concept of probability. To avoid misunderstandings (RC) could
be dubbed ‘physical-range conception’, if this were not too narrow. Again,
what is essential are laws of Nature and continuous initial conditions, but not
necessarily laws of physics. Therefore, the term ‘natural-range conception’
seems to be most appropriate.

5.4 The method of arbitrary functions

Continuous functions can be characterized as functions that are approximately
constant on any sufficiently small interval. It is enough for continuity if this holds
for equilateral intervals. Hence, in the ideal limiting case of the range interpretation
we have ∫

Sa

δ(x) dx = p

for any continuous density function δ : S → R from the initial-state space S into
the real numbers R. In reality, at best we approach the ideal case, and therefore
the equation is neither exactly true nor does it hold for certain eccentric density
functions. Two types of (continuous) densities are obviously apt to create problems:
on the one hand, density functions that are periodic with a period exactly the size of
the ‘patches’ the initial-state space is divided into, and on the other hand, density
functions that put most of the weight on a single patch (a patch being a measurable
connected set of maximum size consisting of initial states that all lead to the
same outcome). These densities fluctuate either with a high frequency, or else very
strongly, on at least one relatively small area of the initial-state space. In order
to exclude them, we have to restrict the set of admissible densities to those of

5 See von Wright (1982) and Heidelberger (2001).
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appropriately bounded variation. Taking this into account, we can restate the range
interpretation of probability thus:

(AF) Let E be a random experiment and a a possible outcome of E. Let S ⊆
Rn for some n be the initial-state space attached to E, and Sa ⊆ S be the set of
those initial states that lead to outcome a. If there is a number p such that for any
continuous density function δ:S → R whose variation is appropriately bounded on
small intervals of S, we have

∫
Sa

δ(x) dx ≈ p, then there is an objective probability

of a upon a trial of E, and its value is p.

The bounded-variation-condition would have to be stated more precisely as follows:
There must be appropriate positive real-valued constants c, k such that for any
continuous density function the variation of which is less than c on any interval of a
size less than k, the approximate equation holds. In this way densities are excluded
that fluctuate either with a very high frequency or very abruptly and strongly. Let
us call such densities ‘irregular’ or ‘eccentric’, the others ‘regular’, ‘ordinary’, or
‘well-behaved’. The central question for the range approach, to be discussed in the
next section, concerns the justification of this constraint. Before addressing it, I
will continue the list of remarks.

(L) The approach to probabilities via continuous density functions is traditionally
called ‘method of arbitrary functions’. A sketch of it can be found in von
Kries (1886: ch. 3). It is worth pointing out that von Kries addressed almost
any aspect of the range conception, including, for example, its application to
statistical physics (ch. 8). One can say with little exaggeration that the very
first treatment of the approach was also essentially complete concerning the
main ideas, but much less concerning their elaboration. Von Kries’s style is
rather informal, even more than that of the present chapter, which is partly
due to the fact that the requisite mathematical tools were not yet developed
in his times. Henri Poincaré, in Calcul des Probabilités (1896) as well as in
Science and Hypothesis (1902), was the first to apply the method of arbitrary
functions rigorously, to the so-called wheel of fortune. This wheel consists of a
disc which is divided into small segments of equal size whose colours alternate
between red and black, and a spinning pointer which is pushed and eventually
comes to rest on either a red or a black segment. It is a particularly simple
example, because, provided that the pointer starts in a fixed initial position, its
final position depends on its initial velocity only, and so the initial-state space
has only one dimension. Poincaré shows that any ordinary distribution over
initial velocities leads to a probability of approximately 1/2 for the outcomes
‘red’ and ‘black’, respectively. Since then, the wheel of fortune has served as
the standard example to introduce the method of arbitrary functions.
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(M) Later on, more demanding examples were treated by Eberhard Hopf (1934,
1936), who also gave the first systematic account of the method. The dif-
ficulty is, not just to make a more or less plausible claim to the effect that
with a certain arrangement the assumptions of the range interpretation or the
method of arbitrary functions are fulfilled and that, therefore, probabilities
that are estimated, or known in advance from other sources, can be under-
stood accordingly, but to show that those assumptions are fulfilled and to
derive the probabilities mathematically by actually constructing and investi-
gating the initial-state space. This proves too difficult even in comparatively
simple examples, like the Galton-board, but Hopf treated some non-trivial
examples at least, in which the probabilities are not known in advance from
symmetry considerations. In general, the range conception is meant to provide
truth conditions for probability statements, but it is not well suited to supply
assertibility conditions. In most cases, one has to infer the probabilities from
symmetries or relative frequencies instead of directly assessing the initial-state
space of a random experiment.

(N) Von Plato (1994: ch. 5) gives an historical overview of the method of arbitrary
functions. A modern treatment of the mathematics is Engel (1992). Stevens
(2003) is by far the most comprehensive contemporary investigation of the
range approach. Remarkable about his treatment is that he sticks to a realistic
modelling insofar as he avoids the transition to limiting cases that is typical
for mathematically-oriented treatises. He sketches applications of the method
to statistical physics (ch. 4.8) and population ecology (ch. 4.9) and investi-
gates the presuppositions under which it could work in the social sciences
(ch. 5.4). According to him, there is good reason to view probability as a
complex high-level phenomenon that occurs if and only if initial-state spaces
are structured in the indicated way. Consequently, he is inclined to reject the
‘simple probabilities’ of the single-case propensity theory (ch. 5.6).

(O) I have little to add to these comprehensive and thorough studies, except con-
cerning the question of the interpretation of the emerging probabilities. While
the early writers like Poincaré and Hopf adhered to a frequency theory of
probability and accordingly understood the density functions as idealized
representations of actual frequencies, Strevens deliberately remains neutral
in view of interpretational questions (Strevens, 2003: ch. 1.32, 1.33, 2.14,
2.3). He is interested in the ‘physics’, not the ‘metaphysics’, of probability.
According to him, you may interpret the density functions in any way you
like, whereupon your interpretation will simply carry over to the resulting
outcome probabilities. The situation is: probabilities in – probabilities out; the
density functions over the initial-state space represent probability distribu-
tions. In general, one can say that the phenomenon caught by the phrase
‘method of arbitrary functions’ or ‘range approach’, if discussed at all by
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writers on probability, was taken to be an explanation for the existence of
probabilistic patterns, but not as an interpretation of the concept of probabil-
ity. In contrast to that, I would like to take seriously the idea that the range
approach provides an independent proposal for an interpretation of probability
statements, in the sense that they are made true or false by the structure of the
corresponding initial-state spaces.

5.5 The main objection to the range interpretation

The range conception identifies probabilities with proportions of outcomes in suit-
ably structured initial-state spaces. This is, furthermore, not just meant to be a
contingent numerical identity, but a proposal for an objective interpretation of
probability. What I am going to discuss now under the heading ‘main objection
to the range interpretation’ has two parts. The first does not yet challenge the
numerical identification, but just denies that it is suitable for an interpretation of
probability statements. The second calls into doubt the numerical identification,
which is, of course, a minimal requirement without which you cannot even start to
consider the range proposal. The objection goes like this:

As with the classical approach, we do not get an interpretation of probability, because the
concept is in fact presupposed. The range approach has to assume that initial states in the
same small equilateral interval are approximately ‘equally possible’, i.e. it must assume
an approximately uniform probability distribution over any such interval. Otherwise, there
would be no reason to identify the proportion with which a certain outcome is represented
within an arbitrary (but not too small) such interval with the probability of that outcome.
The point is even more obvious with the method-of-arbitrary-functions formulation: What
are those density functions supposed to be? Clearly, they represent probability distributions
over initial states, and so the question of the interpretation of probability is merely shifted
back, from probabilities of outcomes to probabilities of initial states.

Furthermore, it is not even possible to claim that the outcome probabilities are numer-
ically identical to the respective proportions in the initial-state space. The probabilities of
the outcomes depend not only on this space, but also on the actual density function over it.
An initial-state space plus a probability density on it fix outcome probabilities, the space by
itself fixes nothing. There are, of course, cases in which all ordinary density functions lead to
roughly the same outcome probabilities, and in which only quite eccentric densities would
yield different ones. But this does not mean that in these cases you can fix the probabilities
without taking into account densities over the initial-state space, at least implicitly. For the
actual density might well be an eccentric one, in which case you would get the probabilities
wrong. Therefore, it is not even possible to numerically identify outcome probabilities with
proportions in initial-state spaces. They are not always identical, and if they are, this is
contingently so.

This criticism is undoubtedly strong. But it underestimates the fact that the range
approach refers precisely to situations in which the initial-state space is structured
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in a way that guarantees independence of the outcome probabilities from any
particular density function. Well, not quite – we have to confine ourselves to not-
too-eccentric densities. But the independence is very far-reaching. We need not
assume a uniform distribution over the initial-state space, i.e. treat the initial states
as equally possible cases, or something like that. By considering only continuous
density functions with appropriately bounded variation, we treat adjacent small
regions of the initial-state space as approximately equally possible, but in fact this
does not seem to be a severe restriction. The values of the probabilities we get
out of the range approach would only be wrong if there were such a thing as the
true probability distribution over the initial-state space and if this distribution were
eccentric. In that case we would not dismiss the range approach, however, but
rather conclude that we had overlooked some nomologically relevant factor, which
means either that we had got the initial-state space wrong, or that this space is not
primordial.

This observation is the key to answering the objection. The laws of Nature
determine the result, given the initial conditions, but they leave open what those
initial conditions are. As they do not care for the initial conditions, and we cannot
control them sufficiently, it can only be by accident if on repeated trials of E
an eccentric distribution over S emerges. This would not give us a reason to
change our expectations concerning the possible outcomes, i.e. we would maintain
our judgments concerning the objective probabilities. But if, on the contrary, we
somehow convince ourselves that there is something behind the observed eccentric
distribution, i.e. that it can be relied on for future predictions, we would conclude
that there must be some nomological factor we have overlooked: the laws of Nature
actually do care, contrary to what we thought. This reaction shows, I suppose, that
we are quite ready to analyse probability according to the range interpretation. We
are not prepared to accept ‘just so’ a falling-apart of objective probabilities and the
respective proportions in the associated initial-state space. We would look for an
explanation, which would then change our modelling of the experimental situation
and thereby enable us to uphold the identification.

Furthermore, if we are able to maintain the numerical identity between objective
probabilities and proportions of outcomes in initial-state spaces, we can analyse
the concept of probability accordingly, without circularity, because in (RC) there
is no talk about equally possible cases, nor about densities or distributions over
initial-state spaces. The probabilities depend only on the space itself, after all.
This discussion bears heavily on the distinction between laws of Nature and initial
conditions, or, in the wording of von Kries, between the ‘nomological’ and the
‘ontological’ (von Kries, 1886: ch. 4.4). As in remark (H), above, I cannot do full
justice to this topic here, but it seems to be clear that we tend to make the distinction
in a way that supports the range conception.
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Another reply to the main objection, put forward by Strevens (2003: ch. 2.53),
considers perturbations of density functions. An eccentric density over the initial-
state space would give us different probabilities, to be sure, but any perturbation
of this density that is not very slight is liable to change the probabilities again.
The probabilities that are due to an eccentric density are not resilient, their values
depend on the fact that this very density, and no other, is the true one. In contrast
to this, the probabilities given by the standard densities are insensitive to changes
in the density: this is precisely the upshot of the method of arbitrary functions.
Now, it is very doubtful if there ever is such a thing as ‘the true density’ on the
initial-state space. Why should Nature, in its choice of initial states, follow some
particular density function, after all (provided that we took all relevant laws of
Nature into account in modelling the initial-state space)? Thus we can say either
that the objective outcome probabilities are given by the regular densities, which
all lead to the same probabilities, or else that there are no objective probabilities at
all. This confirms the foregoing point that if we could somehow rely on a certain
eccentric density to be the true one, this would have to be due to some neglected
nomological factor that guarantees the stability of this density. Without such a
stabilizing factor the probabilities the density gives rise to could not properly be
called ‘objective’.

These answers to the objection are not yet completely satisfying, as shown by
a second, closely related criticism. In considering the proportions with which the
various possible outcomes are represented in the initial-state space, we assume a
standard measure on this space. To be sure, any continuous transformation of this
measure with appropriately bounded variation would lead to the same probabilities,
but why not choose a devious or even completely gerrymandered measure? Take
again the throwing of a die. As we have seen, if we were able to construct the
initial-state space and to survey it in detail, we would find it consisting of very
small regions, a kind of patches, each patch uniformly leading to a particular result.
Now, in view of these patches, we might choose a measure that blows up just those
patches which lead to the outcome ‘six’, at the expense of all other patches. If
one metricizes the initial-state space in such a non-standard way, there may well
be a fixed proportion of ‘six’ in any (not-too-) small equilateral interval, but this
proportion would now exceed the true probability of ‘six’. That probability has
not changed, of course. The random experiment is the same as before, we merely
represented the initial-state space attached to it in an unusual way, i.e. chose a
strange measure. On what grounds can such a representation be excluded?

The connection with the foregoing discussion is that an appropriately distorted
initial-state space, with the ‘six’-patches inflated and the others shrunk in relation to
them, amounts to the same as the choice of the standard measure plus a density that
is suitably periodic with a period of the size of the patches. Now, I said that if we
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should get the impression that Nature’s choice of initial conditions could reliably be
modelled by such a density function, we would conclude that we have overlooked
some nomologically relevant factor and the initial-state space is not primordial. But
could we not base our considerations on the suitably distorted space as well? And
if we did, would we not then be forced to dismiss all ordinary density functions
as eccentric, because any such function has troughs over the ‘six’-patches of the
distorted space? Would we not then, by an argument analogous to the foregoing
one, be forced to conclude that we must have overlooked some nomologically
relevant factor if we came to the conclusion that Nature followed such a density in
selecting initial conditions? This would be a reductio of the reasoning given above.
In this scenario, any density can appear to be regular or irregular, to be ordinary
or eccentric, depending on the measure on the initial-state space. Therefore, if we
rule out certain densities as irregular or eccentric, this can only be in relation to the
standard measure, or to a large class of well-behaved transformations of the standard
measure, but not to just any old measure one happens to choose. Consequently, it
has to be assumed that standard ways of measuring the distance between vectors
of physical quantities are distinguished in an objective sense. Nature has to single
out the measure (or at least a large class of suitably well-behaved measures that are
equivalent with respect to the relevant proportions) together with the initial-state
space, if we are to get objective probabilities out of the range approach. It is then
only in relation to this ‘natural’ measure (or class of measures) that a density counts
as eccentric and thus as giving reason to remodel the physical situation by looking
for a further, so far neglected nomological factor.

A distorting measure of the kind sketched above gives rise to a very unnatu-
ral representation of the possible initial states. The different components of the
initial-state vector do not represent the usual physical magnitudes any longer, but
related ones that are the result of complicated and entangled transformations of the
former. (The components of the initial-state vector are not distorted one by one, but
all together.) The new magnitudes we get in this way play no role in physics, and
with good reason. For example, the usual conservation laws do not hold for them.
Similar observations can be made for even more gerrymandered transformations
of the initial-state space, if, e.g., the space is torn into pieces that would then be
rearranged so as to yield different probabilities of the outcomes, or no probabilities
at all.6 The standard physical magnitudes would thereby be transformed in a not
only complicated and entangled but even discontinuous way. In general, it should
be possible to rule out as unnatural the magnitudes that are the result of such trans-
formations, and with them the corresponding distance measures for initial states.
This is sketchy and programmatic, of course. We cannot, however, be satisfied

6 Strevens speaks of ‘racked’ and ‘hacked’ initial condition variables, respectively (Strevens 2003: ch. 2.53).
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with just saying that if we represent the initial-state space in standard ‘reasonable’
ways, we always get the same proportions of the possible outcomes. The laws of
Nature do not only have to tell us what the outcome of the experiment is, given
certain initial conditions, but also which distance measure, or class of equivalent
measures, to choose for initial states.7 To put it the other way round: as far as the
choice of the measure is a matter of convention, as far as the initial-state space has
no ‘naturally-built-in’ measure, or class of measures that are equivalent regarding
the proportions of the outcomes, the probabilities we get out of the range approach
are merely conventional as well.

That such an assumption is necessary can also be seen with Strevens’s perturba-
tion argument. The problem here is that a certain regular measure for the space of
possible densities over the initial-state space, i.e. a distance measure for densities,
is tacitly assumed. Otherwise we could not say that small perturbations of a density
are likely to change the probabilities if the density is eccentric, but not if it is
ordinary. It should be possible in principle to select a measure for densities that is
itself eccentric in such a way so as to render the foregoing statement wrong. Again,
we have to assume ‘natural’ distance measures for densities to be able to assess the
effects of ‘small’ perturbations of densities.

To resume: The main objection to the range conception can be answered if and
only if standard ways of measuring the distance between initial-state vectors are
naturally distinguished. The probabilities we get out of the range conception are
objective precisely to the extent in which this is the case. But in view of the serious
difficulties of propensity and frequency theories, the range approach seems to be a
viable option for an objective interpretation of probability.8
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Probability in Boltzmannian statistical mechanics

roman frigg

6.1 Introduction

A cup of tea, left to its own, cools down while the surrounding air heats up
until both have reached the same temperature, and a gas, confined to the left
half of a room, uniformly spreads over the entire available space as soon as the
confining wall is removed. Thermodynamics (TD) characterizes such processes in
terms of an increase of thermodynamic entropy, which attains its maximum value
at equilibrium, and the second law of thermodynamics posits that in an isolated
system entropy cannot decrease. The aim of statistical mechanics (SM) is to explain
the behaviour of these systems, in particular their conformity with the second law,
in terms of the dynamical laws governing the individual molecules of which the
systems are made up. In what follows these laws are assumed to be the ones of
classical mechanics.

An influential suggestion of how this could be achieved was made by Ludwig
Boltzmann (1877), and variants of it are currently regarded by many as the most
promising option among the plethora of approaches to SM. Although these variants
share a commitment to Boltzmann’s basic ideas, they differ widely in how these
ideas are implemented and used. These differences become most tangible when
we look at how the different approaches deal with probabilities. There are two
fundamentally different ways of introducing probabilities into SM, and even within
these two groups there are important disparities as regards both technical and
interpretational issues. The aim of this chapter is to give a statement of these
approaches and point out wherein their difficulties lie.

6.2 Boltzmannian statistical mechanics

The state of a classical system of n particles with three degrees of freedom is
completely specified by a point x = (r1, p1, . . . , rn, pn) in its 6n dimensional phase
space �, where ri and pi are position and momentum, respectively, of the ith
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particle.1 For reasons that will become clear soon, x is referred to as the system’s
(fine-grained) micro-state. � is endowed with the ‘standard’ Lebesgue measure
µ. Because we only consider systems in which the total energy is conserved and
which have finite spatial extension, only a finite region �a ⊂ � is accessible to x.

We now assume that dynamics of the system is governed by Hamilton’s equa-
tions, which define a measure-preserving flow φt on �: for all times t, φt : � → �

is a one-to-one mapping and µ(R) = µ(φt (R)) for all regions R ⊆ �.2 To indicate
that we consider the image of a point x under the dynamics of the system between
two instants of time t1 and t2 (where t1 < t2) I write ‘φt2−t1 (x)’, and likewise for
‘φt2−t1 (R)’. The inverse is denoted by ‘φt1−t2 (x)’ and provides the system’s state at
time t1 if its state was x at t2, and likewise for ‘φt1−t2 (R)’.

It is one of the central assumptions of Boltzmannian SM (BSM) that the sys-
tem’s macro-states Mi, i = 1, . . . , m (and m < ∞) – characterized by the values of
macroscopic variables such as pressure, volume, and temperature – supervene on
the system’s micro-states, meaning that a change in the macro-state must be accom-
panied by a change in the micro-state. Hence the system’s micro-state uniquely
determines the system’s macro-state in that to every given x ∈ �a there corresponds
exactly one macro-state, M(x). This determination relation is not one-to-one as
many different x can correspond to the same macro-state. It is therefore natural
to define the macro-region of Mi, �Mi

, as the subset of �a that consists of all
micro-states corresponding to macro-state Mi:

�Mi
:= {x ∈ �a | Mi = M(x)}, i = 1, . . . , m. (6.1)

The �Mi
together form a partition of �a , meaning that they do not overlap and

jointly cover �a: �Mi
∩ �Mj

= � for all i 	= j and i, j = 1, . . . , m, and �M1 ∪
. . . ∪ �Mm

= �a , where ‘∪’, ‘∩’ and ‘�’ denote set theoretic union, intersection
and the empty set respectively.

The Boltzmann entropy of a macro-state M is defined as

SB(M) = kB log[µ(�M )], (6.2)

where M ranges over the Mi and kB is the so-called Boltzmann constant. The macro
state for which SB is maximal is the equilibrium state, meaning that the system is

1 For an introduction to classical mechanics see, for instance, Goldstein (1981) and Abraham and Marsden
(1980); Goldstein (2001), Goldstein and Lebowitz (2004) and Lebowitz (1993a, 1993b, 1999) provide compact
statements of the Boltzmannian approach to SM.

2 In a Hamiltonian system energy E is conserved and hence the motion of the system is confined to the 6n−1
dimensional energy hypersurface �E defined by the condition H (x) = E, where H (x) is the Hamiltonian of the
system. Restricting µ to �E yields a natural measure µE on this hypersurface. At some points in the argument
below it would be more appropriate to use µE rather than µ. However, in the specific circumstances this would
need some explaining and as none of the conclusions I reach depend on this I will not belabour this point
further. For further discussion of this point, see Frigg (2008: 103–113).



94 Roman Frigg

in equilibrium if it has reached this state.3 For the sake of notational convenience
we denote the equilibrium state by Meq and choose, without loss of generality, the
labelling of the macro-states such that Mm = Meq .

Given this, we can define the Boltzmann entropy of a system at time t as the
entropy of the system’s macro-state at t:

SB(t) := SB(Mt ) (6.3)

where Mt is the system’s macro-state at time t; i.e. Mt := M(x(t)), where x(t) is
the system’s micro-state at t.

It is now common to accept the so-called past hypothesis, the postulate that the
system starts off at t0 in a low-entropy macro-condition, the ‘past state’ Mp (and
we choose our labelling of macro-states such that M1 = Mp). How the past state
is understood depends on one’s views on the scope of SM. The grand majority of
Boltzmannians take the system under investigation to be the entire universe and
hence interpret the past state as the state of the universe just after the big bang (I
will come back to this below). Those who stick to the spirit of laboratory physics
regard laboratory systems as the relevant unit of analysis and see the past state as
one that is brought about in some particular experimental situation (such as the gas
being confined to the left half of the room). For the discussion in this chapter it is
inconsequential which of these views is adopted.

The leading idea of BSM is that the behaviour of SB(t) should mirror the
behaviour of the thermodynamic entropy STD; that is, it should increase with time
t and reach its maximum at equilibrium. We should not, however, expect that this
mirroring be exact. The second law of theormodynamics is a universal law and
says that STD can never decrease. A statistical theory cannot explain such a law
and we have to rest content if we explain the ‘Boltzmannian version’ of the second
law (Callender, 1999), also referred to as ‘Boltzmann’s law’ (BL):

Consider an arbitrary instant of time t ′ and assume that at that time the Boltzmann entropy
SB(t ′) of the system is low. It is then highly probable that at any time t ′′ > t ′ we have
SB(t ′′) ≥ SB(t ′).

A system that behaves in accordance with BL is said to exhibit ‘thermodynamic
like behaviour’ (TD-like behaviour, for short).

What notion of probability is invoked in BL and what reasons do we have to
believe that the claim it makes is true? Different approaches to BSM diverge in how
they introduce probabilities into the theory and in how they explain the tendency

3 This assumption is problematic for two reasons. First, Lavis (2005) has argued that associating equilibrium with
one macro-state is problematic for different reasons. Second, that the equilibrium state is the macro-state with
the highest Boltzmann entropy is true only for non-interacting systems like ideal gases (Uffink, 2007: section
4.4). I set these difficulties aside for now.
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of SB(t) to increase. The most fundamental distinction is between approaches
that assign probabilities directly to the system’s macro-states, and approaches
that assign probabilities to the system’s micro-state being in a particular subset
of the macro-region corresponding to the system’s current macro-state; for want
of better terms I refer to these as ‘macro-probabilities’ and ‘micro-probabilities’
respectively. I now present these approaches one at a time and examine whether,
and if so to what extent, they succeed in explaining BL.

Before delving into the discussion, let me list those approaches to probability
that can be discounted straight away within the context BSM, irrespective of how
exactly probabilities are introduced into the theory. The first three items on this
list are the classical interpretation, the logical interpretation and the so-called no-
theory theory. These have not been put forward as interpretations of Boltzmannian
probabilities, and this for good reasons. The first two simply are not the right kind
of theories, while the no-theory does not seem to offer a substantial alternative
to either the propensity theory or David Lewis’ view (Frigg and Hoefer, 2007:
385, 386). Frequentism, as von Mises himself pointed out, is problematic as an
interpretation of SM probabilities because a sequence of results that is produced
by the same system does not satisfy the independence requirements of a collective
(van Lith, 2001: 587). Finally, a propensity interpretation is ruled out by the fact
that the underlying micro-theory, classical mechanics, is deterministic,4 which is
incompatible with there being propensities (Clark, 2001).

6.3 The macro-probability approach

In this section I discuss Boltzmann’s (1877) proposal to assign probabilities to
the system’s macro-states and Paul and Tatiana Ehrenfest’s (1912) view that these
should be interpreted as time averages, based on the assumption that the system is
ergodic.

6.3.1 Introducing macro-probabilities

Boltzmann’s way of introducing probabilities into SM is intimately related to his
construction of the macro-regions �Mi

, which is now also known as the ‘combi-
natorial argument’.5 Assume now that the system under investigation is a gas that
consists of n molecules of the same type and is confined to a finite volume V. Then
consider the six-dimensional phase space of one gas molecule, commonly referred

4 This is true of the systems studied in BSM; there are failures of determinism in classical mechanics when we
look at a larger class of systems (Earman, 1986).

5 For a presentation and discussion of this argument see Uffink (2007: 974–893).
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to as µ-space. The conservation of the total energy of the system and the fact that
the gas is confined to V results in only a finite part of the µ-space being accessible
to the particle’s state. Now put a grid-like partition on µ-space whose cells all
have the size δω and whose borders run in the directions of the momentum and
position axes. This results in the accessible region being partitioned into a finite
number of cells ωi , i = 1, . . . , k. The state of the entire gas can be represented by
n points in µ-space, every one of which comes to lie within a particular cell ωi .
An ‘arrangement’ is a specification of which point lies in which cell; i.e. it is a list
indicating, say, that the state of molecule 1 lies in ω9, the state of molecule 2 lies
in ω13, and so on. A ‘distribution’ is a specification of how many points (no matter
which ones) are in each cell; i.e. it is a k-tuple (n1, . . . , nk), expressing the fact that
n1 points are in cell ω1, and so on. Elementary combinatorial considerations show
that each distribution is compatible with

W (n1, . . . , nk) := n!

n1! . . . nk!
(6.4)

arrangements. Boltzmann then regards the probability p(n1, . . . , nk) of a distribu-
tion as determined by W (n1, . . . , nk):

The probability of this distribution is then given by the number of permutations of which
the elements of this distribution are capable, that is by the number [W (n1, . . . , nk)]. As the
most probable distribution, i.e. as the one corresponding to thermal equilibrium, we again
regard that distribution for which this expression is maximal [ . . . ].

(Boltzmann, 1877: 187)6

In other words, Boltzmann’s posit is that p(n1, . . . , nk) is proportional to
W (n1, . . . , nk).

Macro-states are determined by distributions because the values of a system’s
macroscopic variables are fixed by the distribution. That is, each distribution cor-
responds to a macro-state.7 To simplify notation, let us now assume that all dis-
tributions are labelled with an index i and that there are m of them. Then there
corresponds a macro-state Mi to every distribution Di, i = 1, . . . , m. This is sen-
sible also from a formal point of view because each distribution corresponds to a
particular region of �; regions corresponding to different distribution do not over-
lap and all regions together cover the accessible parts of � (as we expect it to be

6 This and all subsequent quotes from Boltzmann are my own translations. Square brackets indicate that Boltz-
mann’s notation has been replaced by the one used in this chapter. To be precise, in the passage here quoted ‘W’
refers to distribution over a partitioning of energy, not phase space. However, when Boltzmann discusses the
partitioning of µ-space a few pages further down (on p. 191) he refers the reader back to his earlier discussions
that occur on p. 187 (quoted) and p. 176. Hence he endorses the posits made in this quote also for a partitioning
of phase space.

7 It may turn out that it is advantageous in certain situations to regard two or more distributions as belonging to
the same macro-state (e.g. if the relevant macro-variables turn out to have the same values for all of them). As
this would not alter any of the considerations to follow, I disregard this possibility henceforth.
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the case for macro-regions, see Section 6.2). One can then show that the measure
of each macro-region thus determined is given by

µ(�Mi
) = W (n1, . . . , nk) (δω)n (6.5)

where Di = (n1, . . . , nk) is the distribution corresponding to Mi.
This allows us to restate Boltzmann’s postulate about probabilities in terms of

the measures of the macro-regions �Mi
:

The probability of macro-state Mi is given by

p(Mi) = c µ(�Mi
), i = 1, . . . , m (6.6)

where c is a normalization constant determined by the condition
∑m

i=1 p(Mi) = 1.

I refer to this postulate as the ‘proportionality postulate’ and to probabilities
thus defined as ‘macro-probabilities’. The choice of the former label is evident; the
latter is motivated by the fact that the postulate assigns probabilities to the macro-
states of the system and that the values of these probabilities are determined by the
measure of the corresponding macro-region. It is a consequence of this postulate
that the equilibrium state is the most likely state.

Boltzmann does not provide an interpretation of macro-probabilities and we
will return to this problem below. Let us first introduce his explanation of TD-like
behaviour. The leading idea of Boltzmann’s account of non-equilibrium SM is to
explain the approach to equilibrium by a tendency of the system to evolve from
an unlikely macro-state to a more likely macro-state and finally to the most likely
macro-state:

In most cases the initial state will be a very unlikely state. From this state the system will
steadily evolve towards more likely states until it has finally reached the most likely state,
i.e. the state of thermal equilibrium.

(Boltzmann, 1877: 165)

[ . . . ] the system of bodies always evolves from a more unlikely to a more likely state.
(Boltzmann, 1877: 166)

In brief, Boltzmann’s answer to the question of how SM explains the second law
is that it lies in the nature of a system to move from states of lower towards states
of higher probability.

6.3.2 Macro-probabilities scrutinized

The question now is where this tendency to move towards more probable states
comes from. It does not follow from the probabilities themselves. The p(Mi) as
defined by Equation (6.6) are unconditional probabilities, and as such they do not
imply anything about the succession of macro-states, let alone that ones of low
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probability are followed by ones of higher probability. As an example consider a
loaded die; the probability to get a ‘six’ is 0.25 and all other numbers of spots have
probability 0.15. Can we then infer that after, say, a ‘three’ we have to get a ‘six’
because the six is the most likely event? Of course not; in fact, we are much more
likely not to get a ‘six’. And the situation does not change if, to make the scenario
more like SM, the dice is so strongly biased that getting a ‘six’ is by far the most
likely event. If the probability for this to happen is 0.999, say, then we are of course
very likely to see a ‘six’ when throwing the die next, but this has nothing to do
with the fact that we threw a ‘three’ before. The expectation that we move through
progressively more probable events on many rolls is simply a delusion.

A further (yet related) problem is that BL makes a statement about a conditional
probability, namely the probability of the system’s macro-state at t ′′, M(t ′′), being
such that SB(t ′′) > SB(t ′), given that the system’s macro-state at an earlier time t ′

was such that its Boltzmann entropy was SB(t ′). The probabilities of the propor-
tionality postulate are not of this kind. But maybe this mismatch is only apparent
because conditional probabilities can be obtained from unconditional ones by using
p(B|A) = p(B&A)/p(A), where A and B are arbitrary events and p(A) > 0. The
relevant probabilities then would be p(Mj |Mi) = p(Mj & Mi)/p(Mi). Things are
not that easy, unfortunately. Mj and Mi are mutually exclusive (the system can only
be either in Mj or Mi but not in both) and hence the numerator of this relation is
always zero.

The problem with this attempt is, of course, that it does not take time into
account. What we really would have to calculate are probabilities of the form
p(Mj at t ′′ & Mi at t ′)/p(Mi at t ′). The problem is that it is not clear how to do
this on the basis of the proportionality postulate as time does not appear in this
postulate at all. One way around this problem might be to slightly revise the pos-
tulate by building time dependence into it: p(Mi at t) = c µ(�Mi

), i = 1, . . . , m.
But even if this was justifiable, it would not fit the bill because it remains
silent about how to calculate p(Mj at t ′′ & Mi at t ′). In sum, the probabilities
provided to us by the proportionality postulate are of no avail in explaining
BL.

This becomes also intuitively clear once we turn to the problem of interpreting
macro-probabilities. Boltzmann himself remains silent about this question and
the interpretation that has become the standard view goes back to the Ehrenfests
(1912). They suggest to interpret the p(Mi) as time averages, i.e. as the fraction
of time that the system spends in �Mi

.8 The equilibrium state, then, is the most

8 Although time averages are, loosely speaking, the ‘continuum version’ of frequencies, there are considerable
differences between the two interpretations. For a discussion of this point see von Plato (1988: 262–65; 1989:
434–37).
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probable state in the sense that the system is in equilibrium most of the time. Two
things are worth noticing about this interpretation. First, it makes it intuitively clear
why macro-probabilities cannot explain TD-like behaviour: from the fact that the
system spends a certain fraction of time in some macro-state Mi nothing follows
about which state the system assumes after leaving Mi – time averages have no
implications for the succession of states. Second, this interpretation needs to be
justified by a particular dynamical explanation; whether the time the system spends
in a macro-state is proportional to the volume of the corresponding macro-region,
depends on the dynamics of the system.

Of what kind does that dynamics have to be for a time average interpretation to be
possible? Again, Boltzmann himself remains silent about the dynamical conditions
necessary to backup his take on probability.9 The Ehrenfests (1912) fill this gap by
attributing to him the view that the system has to be ergodic. Roughly speaking, a
system is ergodic on �a if for almost all trajectories, the fraction of time a trajectory
spends in a region R ⊆ �a equals the fraction of the area of �a that is occupied
by R.10 If the system is ergodic, it follows that the time that its actual micro-state
spends in each �Mi

is proportional to µ(�Mi
), which is what we need.

This proposal suffers from various technical difficulties having to do with the
mathematical facts of ergodic theory. These problems are now widely known and
need not be repeated here.11 What needs to be noted here is that even if all these
problems could be overcome, we still would not have explained BL because macro-
probabilities, no matter how we interpret them, are simply the wrong probabilities
to explain TD-like behaviour.12

Or would we? When justifying the time average interpretation we introduced the
assumption that the system is ergodic. Ergodicity implies that a system that starts
off in the past state sooner or later reaches equilibrium and stays in equilibrium
most of the time. Is that not enough to rationalize BL? No it is not. What needs
to be shown is not only that the system sooner or later reaches equilibrium, but
also that this approach to equilibrium is such that whenever the system’s macro-
state changes the entropy is overwhelmingly likely to increase. To date, no one
succeeded in showing that anything of that kind follows from ergodicity (or as
Jos Uffink (2007: 981) puts the point, no proof of a statistical H-theorem on the
basis of the ergodic hypothesis has been given yet). And there are doubts whether

9 And, as Uffink (2007: 981) points out, he reaffirmed later in 1881 that he did not wish to commit to any
dynamical condition in his 1877 paper.

10 For a rigorous introduction to ergodic theory see Arnold and Avez (1968), and for an account of its long and
tangled history Sklar (1993: Chs. 2 and 5) and von Plato (1994: Ch. 3).

11 See Sklar (1993: Ch. 5), Earman and Rédei (1996) and van Lith (2001) for discussions.
12 In line with the majority of Boltzmannians I here frame the problem of SM as explaining why entropy increases

when a system is prepared in a low-entropy state. Lavis (2005: 254–61) criticizes this preoccupation with ‘local’
entropy increase as misplaced and suggests that what SM should aim to explain is that the Boltzmann entropy
is close to its maximum most of the time.
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such a proof is possible. Ergodicity is compatible with a wide range of different
dynamical laws and it is in principle conceivable that there is a dynamical law
that is such that the system passes through different macro-states in a way that is
non-TD-like. To rule this out (and thereby justify BL on the basis of the ergodic
hypothesis), one would have to show that the macro-state structure defined by the
combinatorial argument is such that there exists no ergodic system that passes these
macro-states in a non-TD-like way. It seems unlikely that there is an argument for
this conclusion.

Even though ergodicity itself does not fit the bill, an important lesson can
be learned from these considerations, namely that the key to understanding the
approach to equilibrium lies in dynamical considerations. Assume for a minute that
ergodicity was successful in justifying TD-like behaviour. Then, the explanation
of TD-like behaviour would be entirely in terms of the dynamical properties of
the system and the structure of the macro-regions; it would be an account of why,
given ergodicity, the system visits the macro-states in the ‘right’ (i.e. TD-like)
order. The proportionality principle and the probabilities it introduces would play
no role in this; an explanation of the system’s behaviour could be given without
mentioning probabilities once. Of course, ergodicity is not the right condition, but
the same would be the case for any dynamical condition. What does the explaining
is an appeal to features of the system’s phase flow in relation to the partitioning of
the phase space into macro-regions �Mi

; probabilities have simply become an idle
wheel.

6.4 The micro-probability approach

David Albert (2000) proposed a different approach to probabilities in BSM. In
this section I discuss this approach and Barry Loewer’s suggestion (2001; 2004) to
understand these probabilities as Humean chances in David Lewis’ (1986; 1994)
sense.

6.4.1 Introducing micro-probabilities

We now assign probabilities not to the system’s macro-states, but to measurable
subsets of the macro-region corresponding to the system’s macro-state at time t.
For lack of a better term I refer to these probabilities as ‘micro-probabilities’.
An obvious way of introducing micro-probabilities is the so-called ‘statistical
postulate’ (SP):

Let Mt be the system’s macro-state at time t. Then the probability at time t that the system’s
micro-state lies in A ⊆ �Mt

is pt (A) = µ(A)/µ(�Mt
).
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Given this, we can now calculate the probabilities occurring in BL. Let �
(+)
Mt ′

be the subset �Mt ′ consisting of all micro-states x that between t ′ and t ′′

evolve, under the dynamics of the system, into macro-regions corresponding to
macro-states of higher entropy: �

(+)
Mt ′

:= {x ∈ Mt ′ | φt ′′−t ′(x) ∈ �+}, where �+ :=⋃
Mi ∈M+ �Mi

and M+ := {Mi | SB(Mi) ≥ SB(Mt ′), i = 1, . . . , m}. The probabil-

ity that SB(t ′′) ≥ SB(t ′) then is equal to pt ′(�
(+)
Mt ′

) = µ(�(+)
Mt ′

)/µ(�Mt ′ ).

For Boltzmann’s law to be true the condition that µ(�(+)
Mt

)/µ(�Mt
) ≥ 1 − ε,

where ε is a small positive real number, must hold for all macro-states. Whether or
not this is the case in a particular system is a substantial question, which depends
on the system’s dynamics. However, even if it is, there is a problem. It follows
from the time reversal invariance of Hamilton’s equations of motion that if it is
true that the system is overwhelmingly likely to evolve towards a macro-state
of higher entropy in the future, it is also overwhelmingly likely to have evolved
into the current macro-state from a past macro-state M ′′ which also has higher
entropy.13

Albert (2000: 71–96) discusses this problem at length and suggests fixing it
by first taking the system under investigation to be the entire universe and then
adopting the so-called past hypothesis (PH), the postulate that

[ . . . ] the world came into being in whatever particular low-entropy highly condensed big-
bang sort of macrocondition it is that the normal inferential procedures of cosmology will
eventually present to us.

(Albert, 2000: 96)

This postulate is not without problems (see Winsberg (2004b) and Earman (2006)
for discussions), and those who accept it disagree about its status in the theory (see
Callender’s and Price’s contributions to Hitchcock (2004), which present opposite
views). I assume that these issues can be resolved in one way or another and
presuppose PH in what follows. The problem with wrong retrodictions can then be
solved, so Albert suggests, by conditionalizing on PH:

[ . . . ] the probability distribution that one ought to plug into the equations of motion in
order to make inferences about the world is the one that’s uniform, on the standard measure,
over those regions of the phase space of the world which are compatible both with whatever
it is that we may happen to know about the present physical condition of the universe (just
as the original postulate [SP]) and with the hypothesis that the original macrocondition of
the universe was the one associated with the big bang.

(Albert, 2000: 95–96)

13 A point to this effect was first made by Ehrenfest and Ehrenfest (1907; 1912: 32–34). However, their argument
is based on an explicitly probabilistic model and so its relevance to deterministic dynamical systems is
tenuous.
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From a technical point of view, this amounts to replacing SP with what I call the
‘past hypothesis statistical postulate’ (PHSP):

Let Mt be the system’s macro-state at time t. SP is valid for the past state Mp, which obtains
at time t0. For all times t > t0 the probability at time t that the system’s micro-state lies in
A is

pt (A| Rt ) = µ(A ∩ Rt )

µ(Rt )
(6.7)

where Rt := Mt ∩ φt−t0 (Mp).

Again, whether or not BL is true given this postulate is a substantive question
having to do both with the construction of the macro-states as well as the dynamics
of the system; I will come back to this issue below. Let us first turn to the question
of how these probabilities can be interpreted.

6.4.2 Humean chance

The basis for Lewis’ theory of probability is the so-called Humean mosaic, the
collection of all non-modal and non-probabilistic actual events making up the
world’s entire history (from the very beginning to the very end) upon which all
other facts supervene. Lewis himself suggested that the mosaic consists of space-
time points plus local field quantities representing material stuff. In a classical
mechanical system the Humean mosaic simply consists of the trajectory of the
system’s micro-state in phase space, on which the system’s macro-states supervene.

The next element of Lewis’ theory is a thought experiment. To make this
explicit – more explicit than it is in Lewis’ own presentation – I introduce a
fictitious creature, Lewis’ Demon. In contrast to human beings who can only know
a small part of the Humean mosaic, Lewis’ Demon knows the entire mosaic. The
demon now formulates various deductive systems which make true assertions about
what is the case, and, perhaps, also about what the probability for certain events
are. Then the demon is asked to choose the best among these systems. The laws of
Nature are the true theorems of this system and the chances for certain events to
occur are what the probabilistic laws of the best system say they are (Lewis, 1994:
480). Following Loewer (2004), I call probabilities thus defined L-chances.

The best system is the one that strikes the best balance between strength, sim-
plicity and fit. The notions of strength and simplicity are given to the demon and
are taken for granted in this context, but the notion of fit needs explicit definition.
Every system assigns probabilities to certain courses of history, among them the
actual course; the fit of the system is then measured by the probability that it assigns
to the actual course of history, i.e. by how likely it regards the things to happen that
actually do happen. By definition, systems that do not involve probabilistic laws
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have perfect fit. As an illustration, consider a Humean mosaic consisting only of
ten outcomes of a coin flip: HHTHTTHHTT. Theory T1 posits that all events
are independent and sets p(H ) = p(T ) = 0.5; theory T2 shares the independence
assumption but posits p(H ) = 0.9 and p(T ) = 0.1. It follows that T1 has better fit
than T2 because (0.5)10 > (0.1)5(0.9)5.

Loewer’s suggestion is that BSM as introduced above – the package of classical
mechanics, PH and PHSP – is a putative best system of the sort just described and
that PHSP probabilities can therefore be regarded as Humean chances:

Recall that (in Albert’s formulation) the fundamental postulates of statistical mechanics
are fundamental dynamical laws (Newtonian in the case of classical statistical mechanics),
a postulate that the initial condition was one of low entropy, and the postulate that the
probability distribution at the origin of the universe is the microcanonical distribution
conditional on the low entropy condition. The idea then is that this package is a putative
Best System of our world. The contingent generalisations it entails are laws and the chance
statements it entails give the chances. It is simple and enormously informative. In particular,
it entails probabilistic versions of all the principles of thermodynamics. That it qualifies as
a best system for a world like ours is very plausible. By being part of the Best System the
probability distribution earns its status as a law and is thus able to confer lawfulness on
those generalisations that it (together with the dynamical laws) entails.

(Loewer, 2001: 618; cf. 2004: 1124)

There is an obvious problem with this view, namely that it assigns non-trivial
probabilities (i.e. ones that can have values other than 0 and 1) to events within
a deterministic framework, which Lewis himself thought was impossible (Lewis,
1986: 118). Loewer claims that Lewis was wrong on this and suggests that intro-
ducing probabilities via initial conditions solves the problem of reconciling deter-
minism and chance:

[ . . . ] while there are chances different from 0 and 1 for possible initial conditions the
chances of any event A after the initial time will be either 1 or 0 since A’s occurrence or
non-occurrence will be entailed by the initial state and the deterministic laws. However,
we can define a kind of dynamical chance which I call ‘macroscopic chance’. The macro-
scopic chance at t of event A is the probability given by starting with the micro-canonical
distribution over the initial conditions and then conditionalising on the entire macroscopic
history of the world (including the low entropy postulate) up until t. [ . . . ] this probability
distribution is completely compatible with deterministic laws since it concerns only the
initial conditions of the universe.

(Loewer, 2001: 618–19; cf. 2004: 1124)

Loewer does not tell us what exactly he means by ‘a kind of dynamical chance’,
in what sense this chance is macroscopic, how its values are calculated, and how
it connects to the technical apparatus of SM. I will now present how I think this
proposal is best understood and show that, on this reading, Loewer’s ‘macroscopic
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chances’ coincide with PHSP as formulated above modulo a qualification to which
I turn below.

As above, I take the system’s state at t > t0 to be the macro-state Mt. We now
need to determine the probability of the event ‘being in set A ⊆ �Mt

at time t’.
As I understand it, Loewer’s proposal falls into two parts. The first is that the
probability of an event at a time t is ‘completely determined’ by the probability of
the corresponding event at time t0; that is, the probability of the event ‘being in set
A at time t’, pt (A), is equal to the probability of ‘being in set A0 at time t0’ where
A0 is, by definition, the set that evolves into A under the dynamics of the system
after time t has elapsed. Formally, pt (A) = µ0(A0) = µ0(φt0−t (A)), where µ0 is the
micro-canonical distribution over the past state, i.e. µ0( · ) = µ( · ∩ �Mp

)/µ(�Mp
).

The second part is ‘conditionalizing on the entire macroscopic history of the
world [ . . . ] up to time t’. Loewer does not define what he means by ‘macroscopic
history’, but it seems natural to take a macro-history to be a specification of the
system’s macro-state at every instant of time between t0 and t. A possible macro-
history, for instance, would be that the system is in macro-state M1 during the
interval [t0, t1], in M5 during (t1, t2], in M7 during (t2, t3], etc., where t1 < t2 <

t3 < · · · are the instants of time at which the system changes from one macro-state
into another. What we are now expected to calculate is the probability of ‘being in
set A at time t’ given the system’s macro-history. Let Qt be the set of all micro-states
in �Mt

that are compatible with the entire past history of the system; i.e. it is the set
of all x ∈ �Mt

that lie on trajectories that for every t were in the �Mk
corresponding

to the actual macro-state of the system at t. The sought-after conditional probability
then is pt (A | Qt ) = pt (A&Qt )/pt (Qt ), provided that pt (Qt ) 	= 0, which, as we
shall see, is the problematic condition.

Putting these two parts together we obtain the fundamental rule introducing
L-chances for deterministic systems, which I call the L-chance statistical postulate
(LSP):

Let Mt be the system’s macro-state at time t. SP is valid for the past state Mp, which obtains
at t0. For all times t > t0 the probability that the system’s micro-state lies in A is

pt (A | Qt ) = µ0(φt0−t (A ∩ Qt ))

µ0(φt0−t (Qt ))
(6.8)

where Qt is the subset of Mt of micro-states compatible with the entire past history of the
system and, again, µ0( · ) = µ( · ∩ �Mp

)/µ(�Mp
).

The crucial thing to realize now is that due to the conservation of the Liouville
measure the expression for the conditional probability in PHSP can be expressed
as pt (A | Rt ) = µ(φt0−t (A ∩ Rt ))/µ(φt0−t (Rt )). Trivially, we can substitute µ0 for
µ in this expression which makes it formally equivalent to Equation (6.8). Hence
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PHSP can be interpreted as attributing probabilities to events at t > t0 solely on
the basis of the micro-canonical measure over the initial conditions, which is what
Loewer needs.

However, the equivalence of PHSP and LSP is only formal because there is an
important difference between Qt and Rt: Rt only involves a conditionalization on
PH, while Qt contains the entire past history. This difference will be important
later on.

6.4.3 Problems with fit

Loewer claims that BSM as introduced above is the system that strikes the best
balance between simplicity, strength and fit. Trivially, this implies that BSM can
be ranked along these three dimensions. Simplicity and strength are no more
problematic in SM than they are in any other context and I shall therefore not
discuss them further here. The problematic concept is fit.

The fit of a theory is measured in terms of the probability it assigns to the actual
course of history. But what history? Given that L-chances are calculated using
the Lebesgue measure, which assigns measure zero to any trajectory, they do not
lead to a non-trivial ranking of micro-histories (trajectories in �). The right choice
seems to be to judge the fit of theory with respect to the system’s macro-history.

What is the probability of a macro-history? A first answer to this question would
be to simply use Equation (6.8) to calculate the probability of a macro-state at each
instant of time and then multiply them all, just as we did in the above example
with the coins, with the only difference that the probabilities are now not indepen-
dent any more, which is accounted for in Equation (6.8). Of course, this is plain
nonsense. There is an uncountable infinity of such probabilities and multiplying
an uncountable infinity of numbers is an ill-defined operation. Determining the
probability of a history by multiplying probabilities for the individual events in the
history works fine as long as the events are discrete (like coin flips) but it fails when
we have a continuum.

Maybe this was too crude a stab at the problem and when taking the right sorts
of limits things work out fine. Let us discretize time by dividing the real axis into
small intervals of length δ, then calculate the probabilities at the instants t0, t0 + δ,
t0 + 2δ etc., multiply them (there are only countably many now), and then take the
limit δ → 0. This would work if the pt (A | Qt ) depended in a way on δ that would
assure that the limit exists. This is not the case. And, surprisingly, the problem
does not lie with the limit. It turns out that for all t > t1 (i.e. after the first change
of macro-state), the pt (A | Qt ) do not exist because Qt has measure zero, and this
irrespective of δ. This can be seen as follows. Take the above example of a macro-
history and consider an instant t ∈ (t1, t2] when the system is in macro-state M5.
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To calculate the probability of the system being in M5 at t we need to determine
Qt, the set of all micro-states in �M5 compatible with the past macro history. Now,
these points must be such that they were in M1 at t1 and in M5 just an instant later
(i.e. for any ε > 0, at t1 + ε the system’s state is in �M5 ). The mechanical systems
we are considering have global solutions (or at least solutions for the entire interval
[t0, tf ], where tf is the time when the system ceases to exist) and trajectories in
such systems have finite phase velocity; that is, a phase point x in � cannot cross a
finite distance in no time. From this it follows that the only points that satisfy the
condition of being in M1 at t1 and in M5 just an instant later are the ones that lie
exactly on the boundary between M1 and M5. But the boundary of a 6n dimensional
region is 6n − 1 dimensional and has measure zero. Therefore Qt has measure zero
for all t > t1, and accordingly pt (A | Qt ) does not exist for t > t1, no matter what
A. Needless to say, this renders the limit δ → 0 obsolete.

The source of these difficulties seems to be Loewer’s requirement that we condi-
tionalize on the entire macro-history of the system. This suggests that the problem
could be solved simply by reverting back to Albert’s algorithm, which involves only
conditionalizing on PH. Unfortunately the hope that this would make the problems
go away is in vain. First, Loewer seems to be right that we need to conditionalize
on the entire macro-history when calculating the fit of a system. Fit is defined as
the probability that the system attributes to the entire course of actual history and
hence the probability of an event at time t must take the past into account. It can
turn out to be the case that the evolution of a system is such that the probability
of an event at t is independent of (large parts of the) past of the system, in which
case we need not take the past into account. But if certain conditional probabilities
do not exist given the system’s past, we cannot simply ‘solve’ the problem by
ignoring it.

Second, even if one could somehow convincingly argue that conditionaliz-
ing on the entire past is indeed the wrong thing to do, this would not be the
end of the difficulties because another technical problem arises, this time hav-
ing to do with the limit. As above, let us discretize time by dividing the real
axis into small intervals of length δ and calculate the relevant probabilities at
the instants t0, t0 + δ, t0 + 2δ etc. The relevant probabilities are of the form
p(t ′, t ′′) := p(Mj at t ′′|Mi at t ′ & Mp at t0), where t ′ and t ′′ are two consecutive
instances on the discrete time axis (i.e. t ′′ > t ′ and t ′′ − t ′ = δ), and Mi and Mj are
the system’s macro-states at t ′ and t ′′ respectively. Calculating these probabilities
using PHSP we find:

p(t ′, t ′′) = µ[φt ′−t ′′(�Mj
) ∩ �Mi

∩ φt ′−t0 (�Mp
)]

µ[�Mi
∩ φt ′−t0 (�Mp

)]
(6.9)
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These probabilities exist and we then obtain the probability of the actual course of
history by plugging in the correct Mi’s and multiply all of them.

The next step is to take the limit δ → 0, and this is where things go wrong. We
need to distinguish two cases. First, the system is in the same macro-state at t ′ and
t ′′ (i.e. Mi = Mj ). In this case limδ→0 p(t ′, t ′′) = 1 because limδ→0 φt ′−t ′′(�Mi

) =
�Mi

. Second, the system is in two different macro-states at t ′ and t ′′. In this
case limδ→0 p(t ′, t ′′) = 0 because limδ→0 φt ′−t ′′(�Mj

) = �Mj
and, by definition,

�Mj
∩ �Mi

= �. Hence the product of all these probabilities always comes out
zero in the limit, and this for any phase flow φ and for any macro-history that
involves at least one change of macro-state (i.e. for any macro-history in which
the system ever assumes a state other than the past state). Fit, calculated in this
way, fails to put different systems into a non-trivial fit ordering and is therefore
useless.

The moral to draw from this is that we should not take the limit and instead
calculate fit with respect to a finite number of instants of time; that is, we should
calculate fit with respect to a discrete macro-history (DMH) rather than a continuous
one. By a DMH I mean a specification for a finite number of instants of time
t0 =: τ0 ≤ τ1 ≤ . . . ≤ τj−1 ≤ τj := tf (which can but need not be equidistant as
the ones we considered above) of the system’s macro-state at these instants: Mp at
τ0, Mτ1 at τ1, Mτ2 at τ2, . . . , Mτj−1 at τj−1 and Mτj

at τj , where Mτi
is the system’s

macro-state at time τi .14

Before discussing the consequences of this move further, let me point out that
once we go for this option, the seeming advantage of conditionalizing only on
PH rather than the entire past history evaporates. If we only consider the sys-
tem’s macro-states at discrete times, Qt no longer needs to have measure zero.
As a result, the probabilities introduced in Equation (6.8) are well defined. So,
conditionalizing on the entire past is no problem as long as the relevant history is
discrete.

How could we justify the use of a discrete rather than a continuous macro-
history? We are forced into conditionalizing over a continuum of events by the
conjunction of three assumptions: (1) the posit that time is continuous, (2) the
assumption that the transition from one macro-state to another one takes place at a
precise instant, (3) the posit that fit has to be determined with respect to the entire
macro-history of the system. We have to give up at least one of these to justify the
use of a discrete rather than a continuous macro-history. The problem is that all

14 I assume j to be finite. There is a further problem with infinite sequences (Elga, 2004). The difficulties I discuss
in this section and the next are independent of that problem.
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three elements either seem reasonable or are deeply entrenched in the theory and
cannot be renounced without far-reaching consequences.

The first option, discretizing time, would solve the problem because if we
assume that time is discrete the macro-history is discrete too. The problem with this
suggestion is that it is ad hoc (because time in classical mechanics is continuous),
and therefore defeats the purpose of SM. If we believe that classical mechanics is
the fundamental theory governing the micro-constituents of the universe and set
out to explain the behaviour of the universe in terms of its laws, not much seems
to be gained if such an explanation can only be had at the expense of profoundly
modifying these laws.

The second suggestion would be to allow for finite transition times between
macro-states; that is, allowing for there to be periods of time during which it is
indeterminate in which macro-state the system is. This suggestion is not without
merit as one could argue that sharp transitions between macro-states are indeed a
mathematical idealization that is ultimately unjustifiable from a physics perspective.
However, sharp transitions are a direct consequence of the postulate that macro-
states supervene on micro-states. This postulate is central to the Boltzmannian
approach and it is not clear how it could be given up without unsettling the entire
edifice of BSM.

The third option denies that we should conditionalize on the complete macro-
history. The idea is that even though time at bottom is continuous, the macro-history
takes record of the system’s macro-state only at discrete instants and is oblivious
about what happens between these. This is at once the most feasible and the most
problematic suggestion. It is feasible because it does not require revisions in the
structure of the theory. It is problematic because we have given up the notion that
the fit of a theory has to be best with respect to the complete history of the world,
and replaced it with the weaker requirement that fit be best for a partial history.15

From the point of view of Lewis’ theory this seems unmotivated. Fit, like truth, is
a semantic concept characterizing the relation between the theory and the world,
and if the Humean mosaic has continuous events in it there should still be a matter
of fact about what the fit of the theory is.

Moreover, even if one is willing to believe that a discrete version of fit is
satisfactory, it is not clear whether this leads to useful results. Depending on which
particular instants of time one chooses to measure fit, one could get widely different
results. These would be useful only if it was the case that the fit rankings came out

15 And mind you, the point is not that the fit of the full history is in practice too complicated to calculate and we
therefore settle for a more tractable notion; the point is that the fit of a complete macro-history is simply not
defined because the relevant conditional probabilities do not exist.
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the same no matter the choice of instants. There is at least a question whether this
is the case.

6.4.4 The putative best system is not the best system

I now assume, for the sake of argument, that the use of a DMH to calculate fit can
be defended in one way or another. Then a further problem emerges: the package
consisting of Hamiltonian mechanics, PH and PHSP in fact is not the best system.
The reason for this is that we can always improve the fit of a system if we choose a
measure that, rather than being uniform over �Mp

, is somehow peaked over those
initial conditions that are compatible with the entire DMH.

Let us make this more precise. As above, I first use Loewer’s scheme and then
discuss how conditionalizing à la Albert would change matters. The probability
of the DMH is p(DMH ) = pτ0 (Aτ0 | Qτ0 ) . . . pτj−1 (Aτj−1 | Qτj−1 ), where the Aτi

are those subsets of Mτi
that evolve into Mτi+1 under the evolution of the system

between τi and τi+1. One can then prove that

p(DMH ) = µ0[�p ∩ φτ0−τ1 (�1) ∩ . . . ∩ φτ0−τj
(�j )] (6.10)

where, for ease of notation, we set �p := �Mp
and �i := �Mτi

for i = 1, . . . , j .
Now define N := �p ∩ φτ0−τ1 (�1) . . . φτ0−τj

(�j ). The fit of system is measured
by the probability that it assigns to the actual DMH, which is given by Equation
(6.10). It is a straightforward consequence of this equation that the fit of a sys-
tem can be improved by replacing µ0 by a measure µP that is peaked over N,
i.e. µP (N) > µ0(N) and µP (�p \ N ) < µ0(�p \ N ) while µP (�p) = µ0(�p). Fit
becomes maximal (i.e. p(DMH ) = 1) if, for instance, we choose the measure µN

that assigns all the weight to N and none to �p \ N : µN (A) := kµ0(A ∩ N ), for
all sets A ⊆ �p and k = 1/µ0(N) (provided that µ0(N) 	= 0). Trivially, N contains
the actual initial condition of the universe. An even simpler and more convenient
distribution that yields maximal fit is a Dirac delta function over the actual initial
condition.

If there is such a simple way to improve (and even maximize) fit, why does the
demon not provide us with a system comprising µN or a delta function? Coming
up with such a system is not a problem for the demon, as, by assumption, he knows
the entire Humean mosaic. One reason to prefer µ0 to other measures might be that
these make the system less simple and that this loss in simplicity is not compensated
by a corresponding gain in fit and strength. This seems implausible. Handling µN

or a Dirac delta function rather than µ0 does not render the system much more
complicated while the gain in fit is considerable. Hence simplicity does not seem
to provide reason to prefer µ0 to other measures that have better fit.
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This conclusion can be opposed on various grounds. The first is that the intro-
duction of alternative distributions makes the system radically more complex and
hence on balance the original system is better. Consider the delta function first, and
assume for the sake of argument that �Mp

is an interval. A counter to my claim then
would be that the system with the delta function is complex because it has to store a
number – the true initial condition – which is computationally costly because most
numbers have decimal expansions that are infinitely long. By contrast, intervals can
be stored cheaply; all the system has to store is something like ‘the unit interval’.

This argument is unconvincing because it relies on a misleading choice of
examples. A specification of an interval demands the specification of two num-
bers, the interval’s boundaries. These can, of course, be natural numbers (and
hence cheap to store), but this need not be the case; the boundaries of an inter-
val can be real numbers. Moreover, it can also be the case that the true initial
condition is a natural number, and hence cheap to store. So the bottom line is
that storing an interval requires storing two numbers, while storing an initial con-
dition only requires storing one number, and hence the claim that the system
with the interval is simpler is unwarranted. Finally, this still leaves the ques-
tion what happens if �Mp

is not an interval. Things are less clear in that case,
but arguably storing a complicated boundary is more costly than storing a single
number.

What about a distribution peaked over N? The argument against this is that
specifying N is more complicated than specifying �Mp

because the latter is given
to us directly by the system’s macro-state structure, while the former has to be
determined on the basis of the entire Humean mosaic in an extra step. While this
is true, it does not seem to be correct to say that this is an ‘extra’ in the sense
that it involves carrying out a step that we would not otherwise have to carry out.
As becomes clear from Equation (6.10), in determining the fit of the system we
effectively determine N, and there is no way around determining the system’s fit.
So there is no extra work involved in determining N.

Another line of criticism claims that the gain in fit is not, as the above argument
assumes, considerable.16 In fact, so the argument goes, the original system has
already extremely good fit and fiddling around with the measure would result at
best in a small improvement of fit; and this small improvement is not enough to
compensate the loss in simplicity which is involved in using distributions other
than the original one. Therefore, the system containing µ0 is the best system
after all.

I have already argued that I do not think that the use of alternative distributions
makes the system more complex, but this criticism draws our attention to an

16 Thanks to Eric Winsberg for a helpful discussion on this issue.
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important point well worth discussing, namely the absence of a specification in
the putative best system of the Hamiltonian of the universe.17 Assume that the
macro-history of the universe is indeed TD-like in that the entropy increases most
of the time. Why then should we assume that the system consisting of Hamiltonian
mechanics, PH and either PHSP or LSP has good fit? Whether or not this is the
case depends on the dynamical properties of the Hamiltonian of the system. The
phase flow φ – the solution of the equations of motion – explicitly occurs both in
Equations (6.7) and (6.8) and hence whether these probabilities come out such that
the system has good fit with the actual history depends on the properties of φ. In
fact, we cannot calculate any probabilities at all if we do not have φ! Without a
phase flow both PHSP and LSP remain silent and it is absolutely essential that we
are told what φ to plug into the probabilistic algorithms if we want to obtain any
results at all. So it is somewhat puzzling that Loewer does not say anything about φ

at all and Albert (2000: 96) completely passes over it in his definitive statement of
his view (he says something about it at another place; I come back to this below).

We are now faced with the situation that we have to plug some φ into either
PHSP or LSP in order to make predictions, and at the same time we are not told
anything about which φ to take. One way out of this predicament would be to
assume that any φ would do. That is, the claim would be that every classical system
with PH and either PHSP or LSP behaves in such a way that the actual history
comes out having high fit. This, however, is wrong. Whether a system behaves in
this way, and whether the system has good fit with the actual history of the world,
essentially depends both on the dynamics of the system and the structure of the
macro-regions. Some Hamiltonians do not give rise to an approach to equilibrium at
all (e.g. a system of harmonic oscillators), and others may have constants of motion
whose invariant surfaces prevent the system from moving into certain regions of
phase space into which it would have to move for the macro-history to be what
it is.

Hence, the best system cannot possibly consist only of the above three elements;
it also has to contain a specification of the macro-state structure and a Hamiltonian
(from which we obtain φ by solving the equations of motion). If we assume the
macro-state structure to be given by the combinatorial argument, then the challenge
is to present a Hamiltonian (or a class of Hamiltonians) for which the fit of the
system is high. How would such a Hamiltonian look?

17 Albert and Loewer regard Newtonian rather than Hamiltonian mechanics as part of the best system. Newtonian
mechanics has a wider scope that Hamiltonian mechanics in that it allows also for dissipative force functions.
However, such force functions do not occur in SM, where forces are assumed to be conservative. But the
motions to which such forces give rise are more elegantly described by Hamilton mechanics. Hence I keep
talking about Hamiltonian mechanics in what follows, which is not a drawback because the problems I describe
would only be aggravated by considering full-fledged Newtonian mechanics.
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Two criteria emerge from Albert’s discussion. The first and obvious condition
is that φ must be such that the probabilities calculated using PHSP come out
right. The second, somewhat more involved, requirement is that φ be such that
‘abnormal’ micro-states (i.e. ones that lead to un-thermodynamic behaviour) are
scattered in tiny clusters all over the macro-regions (Albert, 2000: 67, 81–85). The
motivation for this condition is subtle and need not occupy us here; a detailed
discussion can be found in Winsberg (2004a). Two things about these conditions
are remarkable. First, Albert’s discussion of these conditions suggests that they are
technicalities that at some point have to be stated for completeness’ sake and then
can be put aside; in other words, his discussion suggests (although he does not
say this explicitly) that these are simple conditions that hold true in all classical
systems and once this fact is noticed we do not have to worry about them any more.
This might explain why neither of them is mentioned in the final statement of his
view (Albert, 2000: 96). This is misleading. These conditions are extremely special
and many phase flows do not satisfy them. So it is very much an open question
whether the Hamiltonians of those systems – in particular the universe as a whole
– to which SM reasoning is applied satisfy these requirements.

To this one might reply that there is a sort of a transcendental argument for the
conclusion that the Hamiltonian of the universe indeed must belong to this class of
Hamiltonians, because if it did not then the universe simply would not be what it
is and thermodynamics would not be true in it. The problem, and this is the second
point, with this suggestion is that even if this argument was sound, it would not solve
the original problem, namely that we cannot calculate any probabilities at all if we
do not have φ. The fact that the Hamiltonian of the universe satisfies all required
criteria does not tell us what this Hamiltonian – or the phase flow φ associated
with it – is, and as long as we do not have the Hamiltonian we simply cannot use
either PHSP or LSP. Hence a system that does not contain the Hamiltonian of the
universe is not really a system at all because the probabilistic algorithms require
the phase flow φ of the universe to be given.

As it stands we do not know what φ is and hence the package of classical
mechanics, PH and either PHSP or LSP fails to produce predictions at all. But
assume now, again for the sake of argument, that we somehow manage to get hold
of the Hamiltonian (and can also solve the equations of motion so that we obtain
φ). We could then say that the best system consists of Hamiltonian mechanics
including the Hamiltonian of the universe, PH, the macro-state structure given by
the combinatorial argument and a probabilistic algorithm. Before we can make this
suggestion definitive we need to settle the question of which probabilistic algorithm
to include. PHSP or LSP? There is again a trade-off between simplicity and fit.
On the one hand, PHSP is simpler than LSP because conditionalizing on just the
past state is simpler than conditionalizing on the entire discrete macro-history up
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to time t. On the other hand, LSP will generally yield better predictions than PHSP
and hence make the system stronger. Whether on balance PHSP or LSP is the better
choice depends, again, on φ. It might be that the dynamics is so friendly that Rt and
Qt coincide, in which case PHSP is preferable on the grounds of simplicity. If this
is not the case, then LSP may well be the better choice. Depending on which one
comes out as striking the better balance, we add either PHSP or LSP to the above
list. This then is our putative system.

Before raising a more fundamental objection against the view that the above
quintet is a best system in the relevant sense, let me voice some scepticism about
this line of defence against the original charge that fit can always be improved
by substituting µ0 by a measure like µN . The past state is defined solely via the
value of some relevant macro-parameters and the corresponding macro-region,
�Mp

, consists of all micro-states that are compatible with these values. In particular
no facts about the behaviour of the x ∈ �Mp

under the time evolution of the system
is made. Now it would be something of a miracle if the overwhelming majority of
points (relative to the Lebesgue measure) in a set thus defined would be the initial
conditions of trajectories that are compatible with the actual course of history. We
would have to have a very good and very special reason to assume that this is the
case, and so far we do not have such a reason. And I doubt that there is one. For
the approach to equilibrium to take place the system needs to be chaotic in some
way, and such system involve divergence of nearby trajectories. For this reason it is
plausible to assume that different x ∈ �Mp

evolve into very different parts of phase
space and thereby move through very different macro-regions, and hence give rise
to different macro-histories. And for this reason using µN rather than µ0 would
improve fit.

There is a more fundamental objection to the view that the quintet of Hamiltonian
mechanics, PH, the combinatorial macro-state structure, a Hamiltonian satisfying
some relevant condition and, say, LSP is a best system in Lewis’ sense. The point
is that a system that does not contain probabilities at all is much simpler than one
that does, at least if probabilities are introduced either by PHSP or LSP. The laws
are made by Lewis’ demon and in the deterministic world of classical mechanics,
the simplest system that the demon can come up with is one that consists of
Hamilton’s equations together with the Hamiltonian of the system, the macro-state
structure, and the exact initial condition – everything else follows from this. In
other words, simply adding the true initial condition as an axiom to mechanics and
the macro-state structure is much simpler than adding probabilities via either PHSP
or SPP – and doing this is no problem for the demon as he knows the exact initial
condition.

Before arguing for this let me locate the moot point. It is important to be clear
on the fact that the ability to solve equations is irrelevant to the argument, because
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both PHSP and LSP presuppose a solution to the equations of motion, because the
phase flow φ, which is the solution of the equations of motion, explicitly figures
both in Equations (6.7) and (6.8).18 In this respect systems comprising PHSP or
LSP are not simpler than a system containing the exact initial condition as an
axiom. So the controversy must be over the computational costs of handling initial
conditions. The argument, then, must go something like this: having the laws and
relevant macro-information is much simpler than knowing an initial condition,
because storing an initial condition involves storing about 6n real numbers, which
is costly because one has to take it in (presumably feed it into a computer), store
it, and later on process it, which takes time and storage space and hence comes at
a high cost of simplicity.

This is an illusion, which stems from the ambiguous use of ‘macro-information’.
Macro-information – knowledge about the values of macroscopic parameters such
as pressure and volume – about the past state is useless when we want to apply, say,
PHSP. What goes into this probabilistic algorithm is not macro-information per
se; it is the set of micro-states compatible with the available macro-information.
Once this is realized, the apparent advantage of a system containing probabilities
evaporates because taking in and storing information about an entire set is more
costly than taking in and storing a single point. This is because specifying a set in
6n-dimensional space at least implies specifying its boundary, and this amounts to
specifying a (6n − 1)-dimensional hypersurface, containing infinitely many points.
And when applying PHSP we have to evolve forward in time this entire surface,
which involves evolving forward in time infinitely many points. How could that
possibly be simpler than taking in, storing, and evolving forward one single point?

In sum, there are strong prima facie reasons to assume that the system’s fit can
be improved by changing the initial measure. And even should it turn out that
this is not the case, a system without probabilities would be better than one with
probabilities. Therefore, neither PHSP nor LSP probabilities can be interpreted as
Humean chances.

6.4.5 Interpreting BSM probabilities

Where does this leave us? I think that the above considerations make it plausible
that what ultimately gives rise to the introduction of probabilities into classical
mechanics are the epistemic limitations of those who use the theory. All we can
know about a system is its macro-state and hence we put a probability distribution

18 Notice that this is a very strong, and entirely unrealistic, assumption. Characteristically we do not have solutions
to the equations of motion of systems studied in SM, and many physicists see this as the motivation to use
statistical considerations to begin with (see for instance Khinchin, 1949).
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over the micro-states compatible with that macro-state, which then reflects our lack
of knowledge.

How these epistemic probabilities should be understood is a question that needs
to be further discussed. Here I can only hint at two possibilities. The first, a
version of objective Bayesianism, appeals to Jaynes’ maximum entropy principle,
which indeed instructs us to prefer µ0 to alternative measures because, given
the information about the system’s macro-state, µ0 maximizes the (continuous)
Shannon entropy. The other alternative is to revise Lewis’ account in a way that
builds epistemic restrictions of the users of theories into systems. Hoefer’s (2007)
theory of Humean chance seems to make room for this possibility. This option
should not scandalize the Humean. The bedrock of contemporary Humeanism as
regards probability is the rejection of a metaphysical grounding of probabilities in
propensities, tendencies, dispositions, and the like. At the same time the Humean
regards probabilities as linked to human beliefs by the so-called Principal Principle,
roughly the proposition that our subjective probabilities for an event to happen
should match what we take to be its objective chance. Hence, for the Humean
probabilities are both non-metaphysical and closely linked to beliefs. Hence, per
se, the fact that SM probabilities have an epistemic component is no reason for
outrage.

There are two main complaints about an epistemic interpretation of SM prob-
abilities. The first19 points out that the thermodynamic entropy is a property of a
physical system and that SB coincides with it up to a constant. This, so the argu-
ment goes, is inexplicable on the basis of an epistemic approach to probabilities.
This argument has indeed some force when put forward against the Gibbs entropy
if the SM probabilities are given an ignorance interpretation, because the Gibbs
entropy is defined in terms of the probability distribution of the system. However,
it has no force against an epistemic interpretation of PHSP or LSP probabilities
simply because these probabilities do not occur in the Boltzmann entropy, which
is defined in terms of the measure of certain parts of phase space (see Equation
(6.2)). Probabilities simply have nothing to do with it.

Another frequently heard objection is a complaint about the alleged causal effi-
cacy of human knowledge. The point becomes clear in the following – rhetorical –
questions by Albert:20

Can anybody seriously think that it is somehow necessary, that it is somehow a priori, that
the particles that make up the material world must arrange themselves in accord with what
we know, with what we happen to have looked into? Can anybody seriously think that our

19 This point is often made in conversation, but I have been unable to locate it in print.
20 Redhead (1995: 27–28, 32–33), Loewer (2001: 611), Goldstein (2001: 48), and Meacham (2005: 287–8) make

essentially the same point.
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merely being ignorant of the exact microconditions of thermodynamic systems plays some
part in bringing it about, in making it the case, that (say) milk dissolves in coffee? How
could that be?

(Albert, 2000: 64, original emphasis)21

It cannot be, and no one should think that it could. Proponents of epistemic proba-
bilities need not believe in parapsychology, and therewith regard knowledge of tea
and coffee as causally relevant to their cooling down.

What underlies this objection is the mistaken view that PHSP probabilities play a
part in bringing about things in the world. Of course the cooling down of drinks and
the boiling of kettles has nothing to do with what anybody thinks or knows about
them; but they have nothing to do with the probabilities attached to these events
either. Drinks cool down and kettles boil because the universe’s initial condition
is such that under the dynamics of the system it evolves into a state in which this
happens. There is no causal connection between knowledge and happenings in the
world, and, at least in the context of classical SM, nothing of that sort is suggested
by an epistemic interpretation of probabilities.

We have now reached the same point as in the discussions of macro-probabilities
in the previous section. All that is needed to explain why things happen is the initial
condition and the dynamics. Prima facie appearances notwithstanding, neither
PHSP nor LSP probabilities have any role to play in explaining why a system
behaves as it does. If these probabilities come out as BL would have them, this is
indicative, it is a symptom, of the system behaving ‘thermodynamically’, but it is
not the cause for this behaviour.

6.5 Conclusion

I have discussed two different ways of introducing probabilities into BSM and
argued that the first one is irredeemably flawed, while the second leads to probabil-
ities that are best understood as having an epistemic component. The discussions
of both approaches have shown that there is a ‘blind spot’ in the literature on BSM,
namely dynamics. Too much emphasis has been placed on probabilities and not
enough attention has been paid to the dynamical conditions that have to fall in
place for a system to behave TD-like. This puts two items on the agenda of future
discussions of BSM: we need to understand better the nature of the epistemic

21 This contrasts starkly with the epistemic language that Albert uses throughout his discussion of PHSP.
In the passages quoted above, for instance, he defines the past state as the one with which the ‘normal
inferential procedures of cosmology will eventually present us’ and when discussing conditionalizing on PH
he names ‘make inferences about the world’ as the aim and invites us to put a measure over those regions
that are compatible with ‘whatever it is that we happen to know about the present physical condition of the
universe’.
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probabilities used in SM and we need to study more carefully the role that the
dynamics of the system plays in explaining TD-like behaviour.22
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Humean metaphysics versus a metaphysics of powers

michael esfeld

7.1 Humean metaphysics

Whereas the philosophy of science was dominated in the second half of the twen-
tieth century by epistemological issues raised in the context of logical empiricism
and its critics, the project of a metaphysics of Nature (metaphysics of science) has
been rehabilitated recently. One can broadly distinguish three positions within that
project: a Humean metaphysics that is close to empiricism (e.g. David Lewis, Barry
Loewer and Helen Beebee), a metaphysics of universals (e.g. David Armstrong)
and a metaphysics of powers (e.g. Sydney Shoemaker, Alexander Bird, Stephen
Mumford as well as Charles Martin and John Heil). This chapter is about the
opposition between the first and the third of these positions. I shall first outline the
Humean view on properties, laws, causation and probabilities, and point out how
on the one hand this view is parsimonious, whereas on the other hand it provokes
the objection that it is deficient (this section). I shall explain how the metaphysics
of powers seeks to remedy these deficiencies and consider its view of probabilities
(Section 7.2). The chapter then recalls the standard argument against the conception
of properties in Humean metaphysics, goes into arguments from physics and finally
maintains that the metaphysics of powers, in contrast to Humean metaphysics, is
able to do justice to both the ontological commitments of physics and of the special
sciences (Section 7.3).

Humean metaphysics gets its name from the denial of the view that there are
necessary connections between distinct entities in the world. Its most prominent
formulation in contemporary philosophy is David Lewis’ thesis of Humean super-
venience:

It is the doctrine that all there is to the world is a vast mosaic of local matters of particular
fact, just one little thing and then another. ( . . . ) We have geometry: a system of external
relations of spatio-temporal distance between points. Maybe points of spacetime itself,
maybe point-sized bits of matter or aether or fields, maybe both. And at those points we
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have local qualities: perfectly natural intrinsic properties which need nothing bigger than a
point at which to be instantiated. For short: we have an arrangement of qualities. And that
is all. There is no difference without difference in the arrangement of qualities. All else
supervenes on that.

(Lewis, 1986: ix–x)

I shall take Lewis’ statement to be characteristic of the position known today as
Humean metaphysics. I shall not consider the relationship between that statement
and the writings of David Hume. Humean metaphysics thus presupposes two things
as primitive:

� the network of spatio-temporal relations between points of space-time. This is what
unifies the world;

� the distribution of fundamental physical properties over the whole of space-time. Fun-
damental physical properties are all and only those physical properties that can occur
at a point of space-time. Position, velocity, energy-mass, charge and spin count among
the candidates for such properties. According to Lewis, these are natural, intrinsic and
categorical properties.

Lewis’ Humean metaphysics does not presuppose anything else as primitive. The
description of everything else that there is in the world is to be derived from the
description of the distribution of the intrinsic and categorical, fundamental physical
properties over the whole of space-time. Everything else that there is in the world
is a feature of that distribution.

Presupposing the distribution of the fundamental physical properties over the
whole of space-time as primitive means that this distribution is entirely contingent.
It is not only contingent that there is the distribution of fundamental physical
properties as a whole that there is in fact, but each element in that distribution is
also contingent. That is the point of denying necessary connections. Consequently,
for each single token of a fundamental physical property at a space-time point, it
is conceivable and metaphysically possible to hold that token (or its counterpart)
fixed and to vary all the other tokens. Assuming that space-time and the distribution
of fundamental physical properties in the Universe originate in the so-called big
bang, given the big bang, in what manner the distribution of fundamental physical
properties in the Universe develop is contingent. Given a possible world that is a
duplicate of the big bang of the actual world, the development of the distribution of
the fundamental physical properties in that possible world may be entirely different
from the development of the distribution of the fundamental physical properties in
the actual world. In short, the physical properties instantiated at any given space-
time point or region do not impose any restrictions at all on the physical properties
that can be instantiated at other space-time points or regions (Beebee, 2006).
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By way of consequence, the fact that there are regularities in the distribution of
the physical properties in space-time – and what these regularities are – has to be
accepted as primitive. Certain of these regularities are laws of Nature. The most
prominent proposal to distinguish the regularities that are laws within Humean
metaphysics is the one of Ramsey–Lewis: the statements of laws of Nature are
all and only the theorems of the system that achieves the best balance between
simplicity and strength in empirical content in providing a complete description of
the world (Lewis, 1973b: 72–75 and 1994: section 3). That view faces a number of
objections, stemming notably from the concern that the criteria of simplicity and
strength are subjective, being epistemic virtues, instead of objective, being anchored
in the world. What is important for our purposes is that according to Humean
metaphysics, there is first the distribution of fundamental physical properties over
the whole of space-time, and then come the laws as supervening on that distribution.
What the laws of Nature are, is hence fixed only at the end of the world.

The same goes for causation. Which property tokens stand in a relation of cause
to effect supervenes on the distribution of the fundamental physical properties over
the whole of space-time. According to a Humean regularity view of causation,
all there is to causation are certain patterns of spatio-temporarily contiguous co-
instantiations of properties over the whole of space-time. Hence, whether or not
two given property tokens stand in a relation of cause to effect depends on what
else there is in the world, namely on whether or not tokens of the same types as the
two given ones are regularly co-instantiated.

Nothing of substance changes if one switches to a counterfactual account of
causation such as the one proposed by David Lewis (1973a, 2004). Causation
consists in certain counterfactual relations among property tokens. The statements
describing these relations are made true by the distribution of the fundamental
physical properties over the whole of space-time in the actual world (Loewer,
2007: 308–316). Lewis’ theory of causation in terms of Humean supervenience
does not commit one to accept his modal realism, that is, the view that other
possible worlds exist, although finding out the truth-value of the counterfactual
statements describing causal relations involves the comparison with other possible
worlds. Whether or not a given counterfactual statement is true at the actual world
depends on the laws holding at the actual world among other things. Hence, again,
whether or not two given property tokens stand in a relation of cause to effect
depends only on what else there is in the actual world, but it depends on all there is
in the actual world, since the laws supervene on the distribution of the fundamental
physical properties as a whole.

The fundamental physical properties are intrinsic and categorical. There are
no powers or dispositions at space-time points over and above the intrinsic and
categorical properties that occur at these points. Indeed, Humean metaphysics has
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no reason to admit dispositions at all. The standard Humean and empiricist account
proceeds in two steps:

� a semantic step that consists in translating statements that ascribe dispositions to objects
into counterfactual conditional statements;

� an ontological step consisting in the claim that these statements are made true by the
distribution of the fundamental, intrinsic and categorical physical properties over the
whole of space-time (and the laws of Nature – but the laws supervene on that distribution).

Consequently, given the second step, there is no need to recognize dispositions
over and above categorical properties.

The conditional analysis of disposition ascriptions has come under attack in
the nineties (Martin, 1994; Bird, 1998). That attack triggered a new debate on the
ontological status of dispositions. But there are persuasive replies to that attack
available that restore the conditional analysis of disposition ascriptions, starting
with Lewis himself (Lewis, 1997 and then notably Gundersen, 2002; Cross, 2005:
323–325; Sparber, 2006; Choi, 2008). In any case, the conditional analysis of
disposition ascriptions on its own is not able to decide the issue of the ontology of
dispositions (Malzkorn, 2000). That issue depends on fundamental metaphysical
considerations.

Nothing in Humean metaphysics hinders that the world can be deterministic. A
Hume world can be such that, given complete knowledge of its initial conditions –
e.g., the physical conditions at the big bang – and the laws of Nature, it is in
principle possible to deduce the description of everything there is in the world. A
Hume world thus is compatible with the letter of Laplacean determinism. However,
the laws of Nature merely have a descriptive function. What the laws are is fixed
only at the end of the world, since their supervenience basis is the distribution of
the fundamental physical properties over the whole space-time. The statements of
laws of Nature simply sum up at the end of the world what there is in the world.

One can therefore maintain that Humean metaphysics violates in any case the
spirit of determinism, that is, the ideas that are associated with determinism: in a
Hume world, the laws and the initial conditions do not determine the development
of the distribution of physical properties in the sense that they are the ground for the
existence of that development. Consequently, some Humeans hold that in a Hume
world, there is no reason to raise concerns about whether or not determinism is
compatible with free will: there is no such problem, since the laws depend on what
there will be in the future and not the other way round (Beebee and Mele, 2002).

Humean metaphysics consequently faces the problem of induction in a meta-
physical form: there is nothing in the past distribution of properties that could
make true the prediction that the future distribution of properties will be like the
past one. Lewis (1994: section 3) assumes that Nature is kind to us, that is, that
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there will be a few simple salient regularities that apply to the distribution of the
physical properties throughout the whole Universe; but there is nothing in the past
distribution of properties that could make such a claim about the whole Universe
true. Of course, a Hume world can be such that the fundamental physical tokens in
a limited region of space-time are de facto sufficient as a supervenience basis for
the laws of Nature in the following sense: the best system describing that limited
region of space-time is identical or comes close to the best system describing the
whole world, since the distribution of the fundamental physical properties is uni-
form throughout the whole world. But the point is that there is nothing in the limited
region of space-time considered – or in any region of space-time that is a proper
part of the whole of space-time – that can make true the belief that space-time
as a whole is like the proper part considered. Note that this is a point about the
metaphysical relation of truth-making and not about the epistemological problem
of the justification of beliefs acquired by induction (that latter problem remains
even if – as in the metaphysics of powers – the former, metaphysical problem does
not arise).

According to Humean metaphysics, the world can be deterministic in the
explained sense, but it can also be probabilistic. In a Hume world, the regular
patterns can be such that not all Fs are followed by Gs (supervenience basis for
deterministic laws), but that only a certain proportion of the Fs in the Universe are
followed by Gs (supervenience basis for probabilistic laws). If F and G are fun-
damental physical properties, these probabilities are irreducible and objective. The
Humean account of probabilities is based on frequencies, but it is more sophisti-
cated than a simple analysis in terms of relative frequencies, invoking the epistemic
virtues of simplicity and strength that enter into the Humean best system account of
the laws of Nature among others (Lewis, 1994; see Frigg and Hoefer, 2007 for an
application to the quantum probabilities). However, for a Humean, the difference
between a deterministic and a probabilistic world is not important as far as meta-
physics is concerned, since every element in the distribution of the fundamental
physical properties over the whole of space-time is contingent.

Consequently, the second law of thermodynamics (increase in entropy) simply
describes a regularity pattern in the distribution of the fundamental physical prop-
erties in space-time. The same pattern can be described by statistical mechanics. If
one takes for granted that there is a global increase in entropy, the description of
the world by thermodynamics as well as by statistical mechanics presupposes that
the state of the Universe immediately after the big bang is a state of extremely low
entropy. This presupposition is known as the past hypothesis. The extremely low
entropy at the beginning of the Universe is a contingent matter of fact. Nonethe-
less, on the Ramsey–Lewis view of the laws of Nature, it is possible to include
the description of that fact among the theorems of the best system: admitting that
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description as theorem amounts to a considerable gain in simplicity (Callender,
2001: section 2.8). Furthermore, there is no intrinsic direction of time. The most
widespread account within the framework of Humean metaphysics consists in say-
ing that the direction of time supervenes on the distribution of fundamental physical
properties which is such that there is an increase in entropy, and that increase in
entropy accounts for the direction of time (see Loewer, 2007).

Hence, to sum up, on the one hand, Humean metaphysics is parsimonious
because it accepts only the distribution of the fundamental physical properties as
primitive and it conceives these properties as being intrinsic and categorical; on
the other hand, there is in Humean metaphysics no answer to the question why
the distribution of fundamental physical properties in the Universe developed as it
did. Causation and laws supervene on that distribution; consequently, they cannot
account for it. If one rejects the idea of there being necessary connections among the
property tokens in the world, the consequence is that one has to accept the whole
distribution of the fundamental physical properties as primitive. If one shrinks
back from that consequence, one has to make a case for there being necessary
connections in the world.

7.2 Causal properties

One possibility to conceive necessary connections is to admit not only particulars
(property tokens), but also universals (property types) and regard the laws of Nature
as certain relations among universals (Armstrong, 1983). The laws of Nature are
then conceived as governing the development of the distribution of the fundamen-
tal physical property tokens in the world. However, on that view, universals are
simply added to the Humean account, and the objections against Humeanism can
be reiterated on the level of the property types as universals. Furthermore, the onto-
logical relationship between the universals and the particulars remains unclear. I
shall therefore not pursue that view in this chapter.

If one remains within the scope of an ontology of property tokens, leaving
open whether or not there are universals over and above the property tokens,
and nevertheless seeks to recognize metaphysically necessary connections among
distinct entities, one has to conceive the particulars that there are in the world as
being such that some particulars are the ground of the existence of other particulars –
such that, given the former particulars, the latter cannot fail to be there. This is the
case if and only if some particulars bring about the existence of other particulars. In
other words, they have the power to produce other particulars. Hence, conceiving
metaphysically necessary connections among distinct entities within an ontology of
particulars commits us to admitting powers. The fundamental physical properties
bestow powers on the objects that instantiate these properties or, simply, these
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properties are powers. I shall use that latter expression for the sake of simplicity
(without thereby taking a stance on the issue of the relationship between objects and
properties in this chapter). We thus get to a causal view of properties in contrast to
the Humean view of properties being categorical. Since the powers in the sense just
outlined are fundamental, they are irreducible. They thus are dispositions without
a categorical basis – in other words, ungrounded dispositions.

There are two versions of an anti-Humean metaphysics of powers discussed in
the current literature.

(1) One version considers each property to be categorical and dispositional in one. More
precisely, to the extent that there is a distinction between the categorical and the
dispositional, it is a distinction among predicates or descriptions instead of properties
(Martin, 1997: in particular sections 3 and 12; Mumford, 1998: chapter 9; Heil, 2003:
chapter 11). Each property thus is a power and a quality at the same time.

(2) The other version identifies properties with dispositions in the sense of powers (Shoe-
maker, 1980; Bird, 2007; as well as Hawthorne, 2001 who calls this view ‘causal
structuralism’ and furthermore Ellis, 2001: in particular chapters 1 and 3; Ellis, how-
ever, admits powers as well as categorical properties as two different kinds of properties
existing in the world). Properties are powers, consisting in the disposition to produce
certain effects.

The difference between these two versions is not as great as it might seem at first
glance: the first version does not conceive the distinction between the categorical
and the dispositional as an ontological one; it is not even admissible to talk in
terms of categorical and dispositional aspects of properties, for such aspects would
in turn be properties. Dispositions or powers are not properties of properties, but
properties are dispositions or powers. Thus, John Heil describes the last view
of Charlie Martin as conceiving properties as ‘powerful qualities’ (Heil, 2009:
178). The second version does not conceive powers as pure potentialities, but as
real, actual properties. They thus are certain qualities that necessarily manifest
themselves in the production of certain effects.

The important point is that powers are not additional properties. Qua being a
certain way – that is, qua being qualitative –, property tokens are the powers to
produce further property tokens. To put the matter in terms of object talk, qua
being a certain way, that is, by having certain qualities, objects have the power
to produce other objects, or other properties in objects. Take charge for example:
insofar as charge is a qualitative property, distinct from e.g. mass, it is the power
to build up an electromagnetic field, resulting in the attraction of opposite-charged
and the repulsion of like-charged objects. The Humean and the anti-Humean agree
about the properties that there are in the world. They disagree about the ontology
of properties – whether the property tokens are such that they simply succeed
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one another or whether they are such that each property token brings about other
property tokens.

The metaphysics of powers accepts as primitive that properties are powers –
more precisely, accepts as primitive the fact that qua being a certain way, being a
certain quality, each property token is the power to produce certain other property
tokens. The laws of Nature supervene on the properties. If it is a law that all Fs are
followed by Gs, this is so because the Fs are the power to produce Gs. Consequently,
instead of the contingent regularity patterns in Humean metaphysics, according to
the metaphysics of powers, the laws of Nature are metaphysically necessary: if
something is a token of the property F, it is the power to produce Gs. Hence, in any
world in which there are Fs, the law that Fs produce Gs holds.

The same goes for causation. Causal relations are not a simple pattern of regular
contiguous co-instantiations of properties of the same types, but one property token
literally produces or brings about other property tokens and thus is the ground of
the existence of those other property tokens. However, in recent literature, doubts
are expressed as to whether in case one conceives the fundamental properties as
dispositions and thus in a causal manner, one inevitably is committed to recognizing
necessary connections in the world, thereby contradicting Humean metaphysics
(Handfield, 2008; Anjum and Mumford, 2009).

Nonetheless, there is a clear contrast between the Humean metaphysics of cat-
egorical properties and a metaphysics that conceives properties in a dispositional
and thus a causal manner, namely as powers. According to Humean metaphysics,
properties of the same type can stand in very different causal relations in different
possible worlds. For instance, Humean metaphysics admits a possible world in
which the property type that plays the charge role in the actual world plays the
mass role, and vice versa. By contrast, according to the metaphysics of powers,
the qualitative character of a property type determines the causal role that the
property type in question plays and hence determines the causal relations in which
the tokens of the property type in question stand. That is why the metaphysics
of powers is a causal theory of properties, whereas Humean metaphysics is not a
causal theory of properties. Since, following the metaphysics of powers, it is the
nature of the properties to produce certain effects, the connection between cause
and effect is a necessary one: the property tokens cannot but produce the effects in
question.

Determinism has a much more substantial meaning in the metaphysics of powers
than in Humean metaphysics. The metaphysics of powers suggests the view that if
there is an initial state of the world, the big bang, the properties instantiated at the
big bang are powers that bring about the subsequent development of the Universe.
In other words, the initial state of the world necessitates all there is in the world.
Consequently, any possible world that is an exact duplicate of the initial state of
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the actual world is an exact duplicate of the actual world as a whole. Determinism,
thus conceived, clearly raises the problem of whether or not it is compatible with
free will. Note that this conception of determinism does not invoke the notion of
the laws of Nature. The powers as such account for the world being deterministic.
The laws are derived from the powers. Nonetheless, of course, it is true on this
account that given the laws and the initial conditions at the origin of the Universe
it is in principle possible to predict everything that there is in the Universe.

However, the metaphysics of powers is not committed to determinism. If it were,
that would be a weighty objection against it, since there are reasons to believe that
the actual world is not deterministic. There are two options within the metaphysics
of powers to introduce probabilities: the one possibility is to take the property F to
be the power to produce tokens of the property G among others, but to say that it
is a matter of pure chance when an F exercises that power. For instance, one may
think of two radioactive atoms of the same type in the same environment, the one
decays within a given time, the other one does not decay within that time. On this
account, however, probabilistic laws are nothing more than Humean regularities:
at the end of the world, they simply describe what percentage of the Fs has
produced a G.

The other, much more widespread option is to make the notion of a power
more precise by employing the concept of propensities (Popper, 1990). On a
widespread account of propensities, the power of Fs to produce Gs is conceived
as a certain tendency intrinsic to each F to bring about a G, and that tendency
has a certain strength. If, for instance, the strength of the power of Fs to produce
Gs is 0.6, then that is the reason why 60% of the Fs in the Universe bring about
a G. Consequently, probabilistic laws, like deterministic laws, are not Humean
regularities. They supervene on the powers, and they are metaphysically necessary.
The main advantage of the account in terms of propensities is to provide for
objective single case probabilities. Frequencies supervene on the propensities.
They are of course the guide to gain cognitive access to the propensities. On that
basis, the propensity theory of probabilities can take the Principal Principle into
account that adapts our subjective degrees of beliefs to objective chance: in finding
out what the correct probability distribution is in a given case, we learn which
subjective degrees of belief are rational to adopt.

The metaphysics of causation in terms of powers is linked with the view of an
intrinsic direction of time. The connection between a token of F and a token of G
is a causal one if and only if the F produces the G. One can argue that causation
thus is the basis for the direction of time: the G, being produced by the F, lies in the
future of the F. Causal processes are the first and foremost example of irreversible
processes: the relationship between a cause and its effect cannot be reversed. There
hence is a direction of time because there are causal processes.
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As regards the initial state of the Universe, it is simply a contingent matter of
fact that, according to the past hypothesis, this is a state of extremely low entropy.
Whereas the Ramsey–Lewis view of laws can promote the description of that
state to a theorem of the best system, the metaphysics of powers simply has to
acknowledge the low entropy of the initial state of the Universe to be a contingent
fact. Nonetheless, any metaphysical position has to accept something as primitive.
In contrast to Humean metaphysics, the metaphysics of powers does not have to
regard the whole distribution of fundamental physical properties in space-time as
primitive. Powers establish a necessary connection between at least some of these
properties. In the ideal case of a completely deterministic world, one only has to
accept the initial state of the Universe as primitive, and the powers instantiated at
the initial state of the Universe are the ground of the existence of the development
of the distribution of the fundamental physical properties throughout the whole of
space-time.

To sum up, the issue of Humean metaphysics vs. a metaphysics of powers
concerns the categorical vs. the causal view of properties. If the fundamental
physical properties are categorical, then the whole distribution of them has to be
accepted as primitive, because there are no necessary connections among them. If,
on the contrary, the fundamental physical properties are powers, then a proper part
of the property tokens instantiated in the world (in the ideal case, those ones at the
big bang) is the ground of the existence of the rest of the fundamental property
tokens in the world, there thus being necessary connections between property
tokens in the world.

7.3 The master argument against Humeanism
and the ontology of science

There is a central objection that can be seen as the master argument against
Humeanism. According to Humean metaphysics, the causal relations and the laws
of Nature vary from possible world to possible world, depending on what else
there is in a world in which properties of the type F are instantiated. Thus, what
F is neither depends on the effects that the tokens of F have nor on the laws in
which F figures in different possible worlds. The objection now is this one: we
gain knowledge about the world via the causal relations in which what there is
in the world stands. A difference that does not give rise to a causal difference is
a difference of which we cannot gain knowledge. Hence, we can specify what
there is in the world only down to causal equivalence. If the properties themselves
are not causal ones, but categorical, intrinsic ones, possessing an essence beyond
that specification, it follows that their essence is a primitive suchness (quiddity)
that is beyond the grasp of our knowledge. The Humean thus is committed to the
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positions known as quidditism and as humility (Lewis, 2009 endorses both these
commitments).

The commitment to quidditism and humility as its consequence are rather
uncomfortable: there are worlds that are different because they differ in the distri-
bution of the intrinsic properties that are instantiated in them, although there is no
difference in causal and nomological relations and thus no discernible difference
between them. A quidditistic difference between worlds is a qualitative difference
(by contrast to a haecceistic difference, concerning the question which individuals
there are in a given world) that implies that worlds have to be counted as differ-
ent although they are indiscernible (Black, 2000). A gap between metaphysics –
postulating primitive qualities (a primitive suchness) – and epistemology thus
arises. These commitments are at odds with a metaphysics that seeks to be close
to empirical science – postulating that there are primitive qualities in the world
that lead to having to recognize possible worlds as qualitatively different although
they are indiscernible. These consequences therefore constitute a strong argument
in favour of the causal theory of properties in general (Shoemaker, 1980 and 2007:
appendix).

Hence, although Humean metaphysics seems to be parsimonious at first glance,
it is not that parsimonious after all, postulating that properties have an essence
beyond the causal relations into which they enter, that essence consisting in a
primitive suchness which is beyond the grasp of our knowledge. Deleting these
commitments leads to the causal theory of properties, namely to the view that
there is nothing more to the properties than the power to bring about certain
effects, and that view then commits us to countenance necessary connections, as
explained above. However, seen from the perspective of avoiding the commitments
to quidditism and humility, the commitment to necessary connections is not at all
mysterious or ontologically inflationary.

If we take properties to be causal powers and if the main argument for adopt-
ing that view is to abandon the commitments to quidditism and humility, then
the fundamental properties cannot be conceived as needing outside manifesta-
tion conditions for exercising the powers that they are. Otherwise, there could
be fundamental properties of two different types F and F∗ present in the world
without that difference showing up anywhere because the appropriate manifes-
tation conditions always lack. It is unproblematic to conceive the fundamental
properties as not needing outside manifestation conditions in order to exercise the
powers that they are, since these powers are not pure potencies, but real, actual
properties. The appropriate model are not macroscopic dispositions such as the dis-
position of water to dissolve sugar, but rather the dispositions of radioactive atoms
for spontaneous decay or of particles with charge to build up electromagnetic
fields.
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However, it seems questionable whether the causal theory of properties is com-
patible with physics. Since Russell’s 1912 famous paper denouncing the notion of
causation as production, a lot of Humeans claim that the notion of powers does
not fit into our fundamental physical theories. All that these theories state are cer-
tain regularities in the distribution of physical properties. There is thus not more
to causation than Humean regularities (cf. notably the papers in Price and Corry,
2007).

Nonetheless, the situation is not as clear as Russell and his contemporary fol-
lowers represent it. Characterizations of the fundamental physical properties in
dispositional terms are widespread (Mumford, 2006: 475–477). As regards the
fundamental physical, intrinsic properties, one can conceive charge, for instance,
as the power to build up an electromagnetic field, mass as the power to resist
acceleration, etc. It is true that the causal conception of these properties is not
mandatory. One can also characterize these properties in terms of certain mathe-
matical structures, namely as being invariant under certain symmetry relations that
constitute a mathematical group (Psillos, 2006: 151–154). However, it is trivial
that any physical property can be represented by a mathematical structure. That
representation does not imply that the property itself is a mathematical structure, on
pain of blurring the distinction between the mathematical and the physical. In short,
that manner of representation leaves open what the nature of the properties thus
represented is. As far as fundamental physical, intrinsic properties such as charge
or mass are concerned, instead of taking their essence to be a primitive suchness
(quiddity), it is an attractive and viable option in the philosophy of physics to
consider them as causal powers.

In the recent literature in the philosophy of physics, stress is laid not only on
mathematical structures representing physical properties, but it is claimed with
sound arguments from the current fundamental theories (quantum theory and
general relativity theory) that some central fundamental physical properties are
themselves physical structures rather than being intrinsic properties. A physical
structure can be conceived as a network of concrete qualitative, physical rela-
tions among objects that do not possess any intrinsic identity and thus no intrinsic
properties on which these relations could supervene. The resulting position is
known as ontic structural realism (Ladyman, 1998; French and Ladyman, 2003;
Esfeld, 2004). However, the founders of ontic structural realism tend to conceive
these physical structures in an anti-Humean way, namely as including a primitive
modality (French, 2006; Ladyman and Ross, 2007: chapters 2–5). One way of
elaborating on that view of a primitive modality is to apply the causal theory of
properties to the fundamental physical structures as conceived by ontic structural
realism.
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As far as quantum theory is concerned, the argument in support of ontic struc-
tural realism is that the state-dependent properties of quantum objects are sub-
ject to entanglement such that, in brief, there are only relations of entanglement
among these objects and no state-dependent properties that each of these objects
possesses on its own. State-dependent properties are position, momentum, spin
angular momentum in each of the three spatial directions, etc. If one recognizes
entangled states and if one maintains that there also are classical physical proper-
ties, at least when it comes to macroscopic objects, one has to conceive a transition
from entangled states to so-called product states, which amount to state-dependent
properties of quantum objects with definite numerical values. The most elaborate
physical proposal for such a transition is the one going back to Ghirardi et al. (1986)
(GRW). The interpretation of quantum theory by GRW lends itself to an account
in terms of dispositions: the entangled states are the power – more precisely, the
propensity – to produce product states, that is, classical physical properties with
definite numerical values localized in classical space-time (Dorato, 2006; Suárez,
2007). Conceiving the entangled states in that manner provides for a clear answer
to the question what the properties of quantum objects are if there are no properties
with definite numerical values, namely propensities for spontaneous localizations.
Furthermore, it yields objective single case probabilities and it makes clear how a
structure can be a power and how it can exercise the power that it is without need-
ing external manifestation or triggering conditions: the disposition (propensity) in
question is one for spontaneous localization. Since entangled states are nonsepara-
ble, it is evident that this disposition (propensity) has to be inherent in the entangled
state as a whole, viz. that the entangled state as a whole is the disposition or power
for spontaneous localization.

As far as general relativity theory is concerned, there are sound arguments,
notably the hole argument, for conceiving the metrical field as being part and
parcel of space-time and thus as regarding the properties of space-time points as
consisting in the metrical relations among them (Esfeld and Lam, 2008). If the
metrical field belongs to space-time, space-time is no passive background arena,
but itself a dynamical entity, containing energy, namely the gravitational energy,
and gravitation is a physical interaction on a par with the other physical interactions,
such as electromagnetism. This situation makes it possible not only to apply ontic
structural realism to space-time as well, but also to conceive the metrical relations
themselves in a causal manner, namely as the power to produce the observed
gravitational phenomena among others (Bartels, 1996: 37–38; Bartels 2009; Bird
2009: section 2.3). One can thus avoid an unsatisfactory dualism of on the one hand
causal properties or structures and on the other hand purely categorical, structural
properties.
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Again, it is not mandatory to conceive the fundamental physical structures in
a causal manner as powers. But there are mainly three arguments for doing so:
(1) Applying the causal theory of properties to the fundamental physical structures
provides for a clear answer to the question what distinguishes physical from mathe-
matical structures: physical structures are causal, whereas mathematical structures
are not. (2) This conception yields a unified ontology that includes properties such
as charge and mass, that is, physical properties for which there is no argument
available that is comparable to the arguments from state-dependent properties
in entangled states and metrical properties and that shows that these properties
themselves are – physical – structures. (3) This conception establishes a firm link
between the fundamental physical structures, which are theoretical entities, and the
observable phenomena, making clear how we can have cognitive access to these
structures and thus opening up the way for vindicating a realist attitude towards
them (Esfeld, 2009).

The last argument calls into question whether Humean metaphysics really is
entitled to realism with respect to the fundamental physical properties. Whereas
Lewis himself considers these properties to be intrinsic, Humean metaphysics can
be adapted to current physics by shifting the focus from intrinsic properties to
relations or structures (such as the structures of quantum entanglement) (Sparber,
2009). The point at issue, however, is whether Humean metaphysics can justify a
realist stance with respect to the theoretical entities in which current physics trades:
since, according to the Humean, the nature of these entities does not consist in
bringing about effects that are observable, what the underlying structures are seems
to be underdetermined by the observable effects. Consequently, the result risks to
be an agnosticism rather than a scientific realism with respect to the fundamental
physical structures (cf. the empiricist structural realism of van Fraassen, 2006).
Such a realism, however, is crucial for Humean metaphysics: Lewis maintains in
his thesis of Humean supervenience quoted above that all there is to the world
is the distribution of the fundamental physical, categorical properties in space-
time. Everything that there is in the world is a feature of that distribution. Thus,
everything is traced back to the theoretical entities of fundamental physics.

Nonetheless, there is more to science than physics. There also are the non-
physical special sciences, such as notably biology and psychology. These sciences
trade in functional properties. Those properties consist in producing certain effects
given standard conditions. Thus, for instance, a gene consists in producing cer-
tain specific phenotypical effects given standard conditions; a functional, mental
property consists in producing certain further mental properties as well as a certain
behaviour given standard conditions, etc. Functional properties, however, cannot
be conceived as categorical properties, for what they are consists in the effects
that they cause. What these properties are can thus not be separated from the
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causal and the nomological relations in which they stand. Humean metaphysics
can acknowledge functional descriptions: the distribution of the categorical fun-
damental physical properties (or structures) over the whole Universe can be such
that it makes true certain functional descriptions. But Humean metaphysics cannot
admit functional properties: in a Hume world, there cannot be properties whose
identity consists in causing certain effects, for all there is in a Hume world is the
distribution of categorical properties. Hence, Humean metaphysics may be in the
position to provide truthmakers for the functional descriptions and theories of
the special sciences, but it is committed to an eliminativist attitude with respect to
the functional properties in which these sciences trade (Esfeld, 2007).

In contrast, the metaphysics of powers has no problem in accommodating the
functional properties in which the special sciences trade. One may go as far as
maintaining that the causal theory of properties (Shoemaker, 1980) is tailor-made
for functional properties, since what a property is consists in the effects that the
property tokens in question produce. However, as mentioned above, there are also
good arguments for extending the causal theory of properties to the physical proper-
ties, including the fundamental physical properties and structures. The metaphysics
of powers thus is an ontology that pays tribute to the commitments of both physics
and the special sciences. As far as that ontology is concerned, nothing hinders that
the properties in which the special sciences trade are at least token-identical with
certain physical properties. But that identity is in any case conservative instead of
an eliminativism with respect to the special sciences’ properties, since what the
properties are consists in the production of certain effects, and some of these effects
are those ones on which the special sciences focus.

In conclusion, summing up this section, there are two main arguments for
preferring the metaphysics of powers to Humean metaphysics. (1) The metaphysics
of powers avoids the commitments to quidditism and humility. (2) It provides for
a complete and coherent ontology that includes the ontological commitments of
physics as well as of the special sciences.
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The crystallization of Clausius’s phenomenological
thermodynamics

c. ulises moulines

8.1 Introduction

The (metatheoretical) structuralist program for the reconstruction of scientific the-
ories (in the following referred to as ‘structuralism’) allows for the performance
of several metatheoretical tasks, among them: (a) precisely explicating the inner
structure of any given ‘textbook’ theory in all its complexity; (b) making a clear
distinction between different theories that in standard expositions are usually not
clearly distinguished from each other, and identifying their intertheoretical rela-
tionships; (c) reconstructing their evolution in historical time. The present essay
applies the structuralist methodology to the analysis of two writings of the German
physicist Rudolf J. Clausius on thermodynamic phenomena published in the mid-
dle of the nineteenth century. Conventional historiography interprets these writings
as the presentation of a first well-founded theory of phenomenological thermo-
dynamics. However, as our analysis will show, Clausius actually constructed in
his papers three different theories – each of them with its own identity, though of
course related to each other.

8.2 The essentials of the structuralist representation of theories

Structuralism (without this name) was initiated by the pioneering works of Joseph
D. Sneed, The Logical Structure of Mathematical Physics (1971) and Wolfgang
Stegmüller, Theorienstrukturen und Theoriendynamik (1973). However, the present
chapter employs the more evolved conceptual tools and representation methods to
be found in the joint work, An Architectonic for Science, by Wolfgang Balzer,
C. Ulises Moulines, and Joseph D. Sneed (1987). For those readers who are not
well-acquainted with structuralist ideas, a brief summary of them is laid out in what
follows.
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According to structuralism, the term ‘theory’ is polisemic: Its ordinary use
denotes at least three different kinds of entities, which differ according to three
different levels of aggregation: theory-elements, theory-nets, and theory-holons. A
theory-net is a hierarchically organized array of theory-elements with a ‘common
basis’ and a common conceptual framework; and a theory-holon is a complex of
theory-nets with different conceptual structures related to each other by certain
intertheoretical links. Since the notion of a theory-holon will play no role in the
present analysis, we can skip it out and concentrate on theory-elements and theory-
nets. The ‘essential identity’ of a theory-element is given by two constituents: a
homogeneous class of models and a domain of intended applications described
by partial structures of the models (their relative non-theoretical parts). (Besides
these two constituents, according to structuralism, a ‘normal’ theory-element is
also constituted by other, more complex model-theoretic structures; nevertheless,
for the purposes of the present chapter, we may forget about them.)

A model is a structure of the form

〈D1, . . . , Dm; A1, . . . , An; R1, . . . , Rp; f1, . . . , fq〉,

where the Di are the theory’s basic domains (its ‘ontology’), the Ai are auxiliary
sets of mathematical entities (usually numbers), the Ri are relations on (some of)
the basic sets, and the fi are (metrical) functions on (some of) the basic and auxiliary
sets.

It is not very important how we determine these models – whether by thoroughly
formal means, or semi-formally, or in ordinary language. But it seems that the most
practical method is to define the class of a theory’s models by means of the
Suppesian method of defining a so-called set-theoretical predicate, i.e. a predicate
defined solely by means of the tools of naive or semi-formal set theory. (We will
see numerous examples of such predicates when we come to the reconstruction of
Clausius’s theories.)

A homogeneous class of models, M, is a class of structures satisfying all the same
set-theoretical predicate. In empirical theories, to this class of models a domain of
intended interpretations, I, is associated: This is a class of substructures of some
of the elements of M, containing (almost) all the Di and Ai, but only some of the
Ri and fi – those that are non-theoretical with respect to the theory in question, i.e.
those whose values may be determined without presupposing the substantial laws
used to define the set-theoretical predicate which, in turn, determines M. The other
relations and functions, if any, are called ‘relatively theoretical’ or ‘T-theoretical’.
The domain of intended applications of a given theory represents the physical
systems to which the theory is supposed to apply, where it has to be tested, or in
other words, its empirical basis.
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Though the distinction between T-theoretical and T-non-theoretical notions is
an important constituent of the structuralist metatheory, its application to concrete
case-studies is usually a quite intricate issue, which involves a lengthy and careful
discussion. For lack of space, I will not go into this issue when analysing Clausius’s
theories here. I will only make some brief remarks about those of his notions that
clearly seem to be ‘Clausius-theoretical’ according to the reconstruction proposed.

Thus, a theory-element is (in this highly simplified version of structuralist
methodology) an ordered pair 〈M, I〉.

A theory-net is a finite class of theory-elements ordered by a relation of spe-
cialization and having a first element. This first element is what may be called ‘the
basic theory-element’, T0 (= 〈M0, I0〉). It is the one where the models are deter-
mined only by the fundamental law(s) of the theory in question. Taken in isolation,
the fundamental law(s) in T0 usually have an empirically almost vacuous nature –
they are ‘guiding principles’ rather than statements of fact. But for this very reason,
they constitute the theory’s core. All other theory-elements Ti of the net come
out of T0 by a process of specialization, i.e. by adding more special (and more
empirical) laws and conditions to the fundamental law(s), and by restricting the
range of intended applications. Clearly, for any i, Mi ⊆ M0. Typically, a theory-net
has the form of an inverted tree:

T0

T1 T2

Figure 8.1

T1, T2, and so on are specializations of T0.
Up to this point, a purely synchronic point of view with respect to the structure of

theories has been taken. But the structuralist methodology may be used to represent
also the diachronic structure of science. As a matter of empirical (historical) fact, it
is assumed that at least four main types of diachronic processes may be distinguished
in the history of science (see Moulines, 1996). All of them can be, and have been,
formally represented within the structuralist framework. These are:

� Evolution: A theory-net evolves in time, adding or suppressing some specialized theory-
elements but without losing its ‘essential identity’, which is given by T0. This roughly
corresponds to what Thomas S. Kuhn called ‘normal science’ and Imre Lakatos
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‘a research program’. Example: the evolution of Newtonian mechanics from the end
of the seventeenth century to the beginning of the twentieth century (see Balzer et al.
1987: Ch. V).

� Replacement: A theory aimed at systematizing a given domain of intended applications
is completely replaced by another theory (with a very different conceptual framework)
aimed at more or less the same domain of intended applications. This corresponds to
one sense of what Kuhn has called a ‘scientific revolution’. Example: the replacement of
phlogiston theory by the oxidation theory (see Caamaño, 2004).

� Embedding: The models of a previous theory are (approximatively, and perhaps not com-
pletely) embedded into the models of a more complex theory. This roughly corresponds
to another sense of Kuhnian revolutions. Example: the embedding of Keplerian planetary
theory into Newtonian mechanics (see Balzer et al. 1987: Ch. VII).

� Crystallization: After the breakdown of a previous theory, and through a long and gradual
process, the models of a new theory are constructed in a piecemeal fashion, with many
intermediate, fragmentary states before a fully developed new theory-net appears. Such
a process is neither ‘normal’ nor ‘revolutionary’ in anything like Kuhn’s sense, and I
know of no other philosophers of science that have dealt with this kind of process (with
the possible exception of Elkana, 1974). But I contend that it is quite frequent in the
history of science. Crystallization is much more complex than the previously mentioned
types of diachronic structures; it contains some elements of the other types but it also
has its own features. The slow emergence of phenomenological thermodynamics after
the breakdown of the caloric theory seems to be a clear case in point. In this process, the
work of Clausius analysed in this paper played a crucial role (though it was only a part
of the whole process).

8.3 The historical data

The ‘paradigm’ for the theory of heat from the end of the eighteenth century until the
mid-1820s was the caloric theory developed by Lavoisier, Laplace, Biot, and others.
This was a quite successful theory until it began to agonize in the late 1820s due
to ‘internal’ (conceptual) as well as ‘external’ (application-related) ‘anomalies’.
A new ‘paradigm’ for the theory of heat, i.e. a full-fledged theory which was
fully satisfactory both from the conceptual-mathematical and from the empirical
point of view was to appear only much later, in 1876, with J. Willard Gibbs’s On
the Equilibrium of Heterogeneous Substances (1st part). There we have for the
first time what we now call ‘phenomenological thermodynamics’ in its presently
acknowledged form, almost indistinguishable from what contemporary textbooks
on thermodynamics lay out (see, for example, Callen, 1960). In the meantime, that
is, between the 1820s and the 1870s, we perceive a long and chaotic period of
partial attempts at the construction of a fully satisfactory theory of heat, which
were partially successful but also partially failed, with very different theoretical
concepts and principles. In this long process, the names of Carnot, Clapeyron,
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Regnault, Mayer, Helmholtz, Joule, Kelvin, Rankine and of course Clausius, among
others, play an important role, all of them working from different standpoints
and obtaining different, sometimes incomparable results. The culmination of this
process was Gibbsian thermodynamics (see Moulines, 1991). Clausius’s work was
an essential part of this process, itself a fragmentary crystallization within the
general crystallization process. This is what is to be reconstructed in the next
pages.

In the 1850s, Clausius published three papers on the theory of heat: Über die
bewegende Kraft der Wärme (1850), Über eine veränderte Form des zweiten Haupt-
satzes der mechanischen Wärmetheorie (1854) and Über die Art der Bewegung, die
wir Wärme nennen (1857). The last paper amounts to the first consistent exposition
of the kinetic theory of gases, and in this sense, it is the forerunner of statistical
mechanics; as such, it is of no concern to us here, since we are dealing with the
development of (phenomenological) thermodynamics – which is what Clausius,
and others, called then the Mechanische Wärmetheorie – the ‘mechanical theory
of heat’. The three papers taken together might be said to constitute a part of a
theory-holon. But since we are not going to deal with such complex structures here,
let us restrict our attention to the papers of 1850 and 1854. The 1850 essay contains
one theory, while the 1854 paper contains two theories. Each one of these theories
may consistently be represented as a theory-net in our sense. To abbreviate, we will
denote the 1850-theory(-net) by ‘Cl-1’, while the two theories (i.e. theory-nets)
laid out in the 1854 paper will be named ‘Cl-2.1’ and ‘Cl-2.2’, respectively.

8.4 The basic theory-element of Cl-1

The 1850 paper is divided in two parts, respectively entitled: ‘I. Consequences of the
principle of the equivalence of heat and work’, and ‘II. Consequences of Carnot’s
principle in connection with the former’.1 Given the form of their presentation,
one could be misled in thinking that Clausius lays out two different fundamental
principles: the principle of the heat/work equivalence, and the hypothesis that
Clausius considers to be the core of the so-called ‘Carnot principle’, namely that
‘whenever work produces heat while not producing a permanent transformation in
the state of the working body, a certain amount of heat goes from the hot body
to a cold one’ (Clausius, 1850: 4). Now, this interpretation, which is still to be
found in contemporary expositions, seems to be misleading, both from the point of
view of Clausius’s original text and of a coherent formal reconstruction of them.
In fact, Clausius himself stresses several times that both principles are ‘intimately

1 Here, as in the rest of the chapter, I translate as truthfully as I can from the original German text. The page
numbers indicated in the quotations are those of the original essay.
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linked’. It is more adequate, as we shall see, to interpret both ‘principles’ as
two specifications of more general and fundamental principle that Clausius takes
implicitly as his starting point.

For the structuralist reconstruction of Cl-1, the first question to be asked is what
its ‘basic ontology’ is, that is what kinds of objects, and what magnitudes defined
over those objects we need to formulate the theory’s laws.

(1) Clausius speaks once and again of bodies, that is, of concrete, spatio-temporally located
entities that may be in physical contact and/or have component parts. In some passages
of his paper, he also has to speak about a more abstract kind of entities: chemical
substances to which the concrete bodies may belong; but this he does only for some
specializations of his theory. This means that his basic ‘ontological commitment’ is
only with bodies, whereas the ‘commitment’ with kinds of bodies only occurs in some
of the theory’s specializations (in particular, for the treatment of ideal gases). Also,
Clausius speaks of bodies as being in a certain state, or as changing their state, though
he does not specify what these ‘states’ might be. This is all that is to be said about the
ontology of Cl-1. Consequently, the basic sets of each model of Cl-1 will be:
� A finite set of bodies: K = {k1, k2, . . . };
� A continuous sequence of states: Z ∼= �+.2

(2) Clausius needs a certain number of primitive magnitudes to formulate his laws. From
a formal point of view, the problem with Cl-1 is that this theory deals with two quite
different kinds of intended applications: ideal gases and steam at a maximum density.
The special laws relevant for one and the other type of application contain indeed
some common magnitudes, but other magnitudes are specific either of ideal gases or
of steam. Formally, this means that in the theory-net representing Cl-1, the models of
the basic element will contain some magnitudes common to all theory-elements of the
net, while in the specializations some further magnitudes have to be added as primitive
concepts – the models becoming thereby more complex structures.

The magnitudes common to all elements of the theory-net are:

A (a universal constant settling the heat/work equivalence);3

P (pressure);
V (volume);
t (‘empirical’ temperature);
Q (‘heat’);
W (‘work’).

There is no doubt that Q and W are basic concepts in Cl-1 – whatever usual text-
books and historical expositions, according to which ‘heat’ was not a fundamental

2 One needs a continuous sequence of states as arguments of differentiable magnitudes. Clausius assumes
throughout his text without further ado that most thermodynamic magnitudes are differentiable functions.

3 Clausius assumes that, according to Joule’s experiments, the value of A should be approximately 1/421. But
A’s concrete value is irrelevant for the formal reconstruction of the theory.
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notion for Clausius anymore, might claim. He speaks all the time about these
magnitudes, they explicitly appear in his ‘fundamental principles’ as well as in the
more special laws, and they are supposed to be differentiable functions. (Though
Clausius does not specify with respect to what kind of parameters they are differ-
entiable, it is clear from the context that these are the states a body goes through.)
On the other hand, it is also true that Clausius substantially departs from previous
approaches to heat and work (essentially those of the caloric theory), especially by
his explicit denial that Q is a conservative magnitude and by ‘identifying’ it with
W. In fact, the discussion at the beginning of his essay seems to make clear that a
new interpretation of Q and W is needed, whereby these notions only make sense if
one accepts the ‘principle of equivalence’ between Q and W. In structuralist terms,
this means that, in this theory, Q and W are to be regarded as Cl-1-theoretical.

The specific concepts to be added in order to formulate the specializations are,
respectively,

� for the ideal gases:

� (a finite set of gaseous substances – this notion is implicit in the original text);
R (a parameter specific of each gaseous substance which depends on the substance’s

specific weight; therefore, it is not identical with our universal constant ‘R’ but it
is related to it);

cV (specific heat at constant volume);
cP (specific heat at constant pressure);
U (an ‘anonymous’ or ‘arbitrary’ function – ‘willkürlich’ is the German word Clausius

employs here; it is undoubtedly what later will be called ‘internal energy’, appearing
in this text for the first time in the history of thermodynamics);4

a (a constant specific of ideal gases);5

� for steam at a density maximum:
� (a finite set of substances with a liquid and a steam phase – implicit in the original

text);
s (steam volume at a maximum density);
ς (liquid volume at a maximum density);
m (mass of liquid transformed into steam);
c (the liquid’s specific heat);
h (another ‘anonymous’ function required to formulate certain differential equations,

of which Clausius only says that it should depend on the steam’s temperature).

4 A further interesting aspect of U should be noted: Clausius explicitly avows that he introduces this magnitude
in order to formulate a differential equation that will allow for a derivation of the ideal gas law, U making sense
only in the context of the equation at stake. In other words, U appears to be Cl-1-theoretical. The same goes
for the function h introduced later on – see below.

5 Clausius writes at the end of his paper that experimental results suggest that the actual value of a should lie
‘around 273’; but, again, the concrete value is unimportant for the formal reconstruction.
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Having settled the ‘ontology’ and the conceptual framework of Cl-1, the next step
is to provide an adequate reconstruction of the fundamental law(s) of the basic
theory-element of Cl-1. A general metatheoretical hypothesis of structuralism is
that, in theories having attained a certain degree of unity and structural complexity,
there will be just one fundamental law, playing the role of a guiding principle and
having (almost) no empirical content when taken in isolation. At first sight, Cl-1
seems to contravene this hypothesis, since Clausius explicitly states two axioms: the
Q/W-equivalence and ‘Carnot’s Principle’. However, I will argue that appearances
mislead us here, and that the metatheoretical just-one-fundamental-law hypothesis
continues to be valid in the present case.

Clausius formulates the Q/W-equivalence principle in the first part of his article:

the heat consumed divided by the work produced = A.
(Clausius, 1850: 17)

As for the Carnot Principle, which is relevant for the second part of the essay,
Clausius states it in a purely informal way:

to the production of work as equivalent there corresponds a mere transfer of heat from a
hot body to a cold one.

(Clausius, 1850: 30)

It is striking that, when Clausius goes on to formulate the Carnot Principle in the
second part of his article, he presupposes that there is an equivalence of work and
heat, that is, he presupposes the first principle. And, as already remarked, there are
other passages in the article where he emphasizes that both principles are ‘intimately
connected’. Therefore, we are confronted with two possible interpretations: (a) the
equivalence principle is the theory’s only fundamental law and the Carnot Principle
is a specialization thereof in the structuralist sense; or (b) both principles constitute
in fact two aspects of one and the same (implicit) guiding principle that is to
be formulated synthetically. Both interpretations are coherent with the rest of
the original text. Nevertheless, I favour the second one since it is easy to make
explicit and, moreover, it seems to me to be more in accordance with Clausius’s
original intentions. Indeed, if we admit that Q and W are differentiable functions
(as Clausius himself presupposes all the time), then it is immediate to state both
principles formally as:

Equivalence principle :
dQ(k, z)

dW (k, z)
= A ∈ �

Carnot’s principle : dW (k, z) > 0 → dQ(k, z) < 0

Then, it is immediate to formulate a synthetic version of both preceding formulas:

dQ(k, z) = −A · dW (k, z), where A > 0
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This is the fundamental law of Cl-1. It is easy to see that, as is usual in such kinds
of laws, this formula by itself is almost devoid of empirical content since Q and W,
taken in isolation, cannot be concretely determined (they are Cl-1-theoretical). They
have to be put in some kind of testable relationship with the other (non-theoretical)
primitive magnitudes of the theory: P, V, t . And, in fact, in his argumentation,
Clausius always presupposes that Q and W are dependent on these magnitudes at
least. Speaking in more formal terms, it may be said that Q and W are functionals
of P, V, t , that is, there are functions fQ and fW (which are functions of functions)
expressing the general form of the dependence of Q and W on P, V, t .

The preceding considerations allow now for a formal definition of the models
of the basic theory-element of the net Cl-1. To abbreviate, we may skip out the
explicit indication of the formal features of each single component of the models
(i.e. whether it is a finite or infinite set, a differentiable function, and so on).

Cl-1 : x ∈ M0[Cl-1] iff :∃K,Z, P, V, t, Q, W, A, f Q, f W

such that

(0) x = 〈K,Z,�, A, P, V, t, Q, W 〉
(1) ∀k ∈ K ∀z ∈ Z : Q(k, z) = f Q(P (k, z), V (k, z), t(k, z), . . .)

(2) ∀k ∈ K ∀z ∈ Z : W (k, z) = f W (P (k, z), V (k, z), t(k, z), . . .)

(3) A > 0

(4) ∀k ∈ K ∀z ∈ Z : dQ(k, z) = −A · dW (k.z)

We could synthesize conditions (1)–(4) in one ‘big’ formula:

(FLCl-1) ∀k ∈ K ∀z ∈ Z : df Q(P (k, z), V (k, z), t(k, z), . . .)

= −A df W (P (k, z), V (k, z), t(k, z), . . .), for A > 0.

This is the theory’s fundamental law.
What about the intended applications of this basic theory-element? Clausius

himself clarifies this point as he writes: ‘[in this work] we are going to restrict our
attention to permanent [i.e. ideal] gases and to steam at a maximum of its density’
(Clausius, 1850: 11). Therefore, the basic domain of intended applications of Cl-1,
I[Cl-1] is

I[Cl-1] = {ideal gases; steam at a maximum density}.

Thus, the net’s basic theory-element is: 〈M0[Cl-1]; I[Cl-1]〉, as previously
defined.
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8.5 The specializations of Cl-1

Two main specialization ‘branches’ may be identified in the tree representing the
theory-net of Cl-1: the one corresponding to the study of ideal gases and the
one aimed at steam at a maximum density. The corresponding specializations
are obtained by specifying, in different ways, the functionals f Q and f W of the
fundamental law.

For the ideal gases, Clausius takes up some previous results to propose the
following specifications:

f W = R dV dt

V
(p. 15)

f Q =
(

d

dt

(
dQ

dV

)
− d

dV

(
dQ

dt

)
dV dt

)
(p. 17)

As Clausius himself recognizes, the second specification is somewhat problematic
since the notion of a ‘heat differential’ is itself physically and mathematically
dubious.

However, by combining it with the less problematic determination of f W,
Clausius comes to the conclusion that one can establish a more plausible dif-
ferential equation if we postulate that there must exist an ‘arbitrary’ function U
that allows for a mathematically correct formulation. (It has already been remarked
that this ‘U’ is ‘our’ internal energy.)

dQ = dU + A · a + t

V
· dV

This is the most general specialization for ideal gases. Using the additional primitive
concepts we have already indicated above (U, R, cV, cP, a, and the implicit notion
of a gaseous substance which is assigned to each concrete body by a function γ )
we come to the following definition of the models of this specialization:

G : x ∈ M[G]iff : ∃K, Z, � , γ , P, V, t, Q, W, U, R, cV, cP, A, a, f Q, f W

such that

(0) x = 〈K,Z,�, γ , �, A, a, P, V, t, Q, W, U, R, cV, cP〉 ∈
(1) x = 〈K,Z,�, A, P, V, t, Q, W 〉 ∈ M0[Cl-1]

(2) ∀k ∈ K ∀z ∈ Z : dQ(k, z)

= dU (k, z) + A · R(γ (k)) · a + t(k, z)

V (k, z)
· dV (k, z)

For Clausius, the second term of the sum in (2) represents the ‘external work’ done
by the gas. One obtains a specialization of this specialization by just assuming that
this work has simply the form ‘p dV’. In such a case, by a simple calculation we
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obtain the law of ideal gases. We may call this specialization of the specialization
G ‘IG’:

IG : x ∈ M[IG] iff : ∃K,Z,�, γ, P, V, t,Q,W,U,A, a, f Q, f W

such that

(0) x = 〈K,Z,�, γ , IR, A, a, P, V, t, Q, W, U 〉 ∈ M[G]

(1) ∀k ∈ K ∀z ∈ Z : A · R(γ (k)) · a + t(k, z)

V (k, z)
· dV (k, z) = p(k, z) dV (k, z)

A further specialization on this same line consists in what Clausius calls an ‘aux-
iliary hypothesis’ (Clausius, 1850: 24) about the molecular constitution of ideal
gases: Such gases, when they receive heat, do not do an ‘internal work’; conse-
quently, all the work done is ‘exterior’ and U is solely a function of temperature.
By abbreviating a little, we may define this specialization as follows:

Mol : x ∈ M[IG] ∧ ∃ φ ∀k ∈ K ∀z ∈ Z (U (k, z) = φ(t(k, z))

Subsequently, Clausius makes an additional assumption: ‘probably’, in this case φ is
a simple function determined only by cV, which allows, in turn, for a determination
of cP:

Mol : x ∈ M[Mol] ∧ U (k, z) = cV(γ ).t(k; z) ∧ cP(γ (k)) − cV(γ (k))

= A · R(γ )

In the models of M[Mol] one obtains as a corollary Poisson’s law:

∀γ ∈ �: cP(γ )/cV(γ ) is a constant.

The other branch of specializations in the net corresponds to steam at a maximum
density. The specifications of the heat and work functionals are quite different
from those of the ideal gases. And the additional primitive concepts needed (as has
been indicated above) are also different. (Analogously to the case of ideal gases,
for formal reasons, we need an assignment function π assigning to each body
considered a particular mixture of a liquid and a vaporous phase in the set � of all
such kinds of mixtures.)

V : x ∈ M[V] iff : ∃K, Z, �, P, V, t, Q, W, s, σ , m, c, h, A

such that

(0) x = 〈K,Z,�, π, �, A, P, V, t, Q, W, s, σ , m, c, h〉 ∈ Mo[Cl-1]
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(1) ∀k ∈ K ∀z ∈ Z : dQ(k, z)
= df Q(P (k, z), V (k, z), t(k, z), . . .)

= dV (k, z)

dt(k, z)
+ c(π (k)) − h(k, z) · dm(k, z) · dt(k, z) ∧ dW (k, z)

= df W (P (k, z), V (k, z), t(k, z), . . .)
= (s(k) − σ (k)) · dP (k, z) · dm(k, z)

Subsequently, Clausius introduces an additional hypothesis suggested by the exper-
imental results of Regnault and Pambour, namely that h always is negative.

V : x ∈ M[V ] ∧ ∀k ∈ K ∀z ∈ Z : h(k, z) < 0

We are now in a position to build up the graph representing the net Cl-1 where the
arrows represent successive specializations (see Fig. 8.2).

M0 [Cl-1]

G V

IG V'

Mol

Mol'

Figure 8.2

8.6 The basic theory-element of Clausius-2.1

In his 1854 paper, Clausius makes a new attempt at establishing phenomenological
thermodynamics on a well-founded basis. This attempt is more restricted and
less concrete than Cl-1: It almost exclusively deals with cycles (‘Kreisprozesse’).
He defines a cycle as a ‘transformation’ (‘Verwandlung’) whereby a body comes
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back to its original state. Another important difference with respect to the first
article is that Clausius presents now the ‘two principles of thermodynamics’ in
a completely independent manner, as if they would correspond to two different
theories. The article is divided in two sharply separated parts with quite different
titles, the second part being much longer and better articulated. Even by the style of
exposition, one gets the impression that the two parts were written at two different
periods of the development of Clausius’s thought. The two principles now get the
wording:

(I) ‘Principle of the equivalence of heat and work’
(II) ‘Principle of the equivalence of transformations’.

Formally, there is no other way but to reconstruct the two parts as two different
theory-nets, which we will call ‘Cl-2.1’ and ‘Cl-2.2’, respectively. Let us analyse
first Cl-2.1. Other than in the 1850 article, Clausius now states the heat/work
equivalence principle by immediately introducing the ‘anonymous’ function U as
a basic concept, and he makes the following symptomatic remark about it: ‘U [is a
magnitude] that we cannot specify at present, but of which we know at least that it
is completely determined by the initial and the final state of the body’ (Clausius,
1854: 130). Consequently, he formulates the fundamental law of Cl-2.1 as follows:

Q = U + A · W

Nota bene : The symbol ‘W’ employed here by Clausius does not now refer to the
‘total work’, as in Cl-1, but only to the ‘external work’.

The first specialization considered refers to cycles. For such cases, Clausius
writes: U = 0. Presumably, what he wants to express is what we now would write
as ∮

dU = 0

A second specialization considered in this part of the paper is devoted to those
bodies where the pressure is the same on all points (the intended applications being
here gases, liquids and some solids). For this, Clausius proposes the equation

dQ = dU + A · p · dV

Towards the end of this first part of the essay, Clausius suggests that one could
consider further specializations of this specialization ‘by applying this formula to
certain kinds of bodies. For the two most important cases, namely for ideal gases
and for steam at a maximum density, I have developed this more special application
in my precedent essay’ (Clausius, 1854: 133). Obviously, he is referring to the net
Cl-1.
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Let us undertake now the structuralist reconstruction of Cl-2.1. Clearly, the
conceptual framework is the same as for the models of the basic theory-element of
Cl-1 but for the additional primitive concept ‘U’. That is, the basic models have the
form 〈K, Z, �, P, V, t, Q, W, U〉. Formally, this means that the models of M0[Cl-1]
are now substructures of the models of M0[Cl-2.1]. M0[Cl-2.1] is determined
by the same conditions as M0[Cl-1], except for the introduction of an additional
‘functional’ to express the dependence of U with respect to V and t (p. 131) and for
the new form of the fundamental law:

Cl-2.1 : x ∈ M0[Cl-2.1] iff : ∃K,Z, P, V, t,Q,W,A,U, f Q, f W , f U

such that

(0) χ = 〈K,Z,�, A, P, V, t, Q, W, U 〉
(1) ∀k ∈ K ∀z ∈ Z : Q(k, z) = f Q(P (k, z), V (k, z), t(k, z))

(2) ∀k ∈ K ∀z ∈ Z : W (k, z) = f W (P (k, z), V (k, z), t(k, z))

(3) A > 0

(4) ∀k ∈ K ∀z ∈ Z : U (k, z) = f U (V (k, z), t(k, z)

(5) ∀k ∈ K ∀z ∈ Z : Q(k, z) = U (k, z) + A · W (k, z)

8.7 Specializations of Cl-2.1

The first specialization of this theory-net deals with cycles. Intuitively, a cycle is a
process, that is, in our terms, a sequence Z of states with a first element (the ‘initial
state’) and a last element (the ‘final state’) such that the values of all fundamental
magnitudes are the same in the two states. We could define this notion in completely
formal terms within our model-theoretic framework, but since this involves some
technicalities, for reasons of brevity, let us just presuppose that the notion of a cycle
has already been defined. Then, the specialization looks like this:

C : x ∈ M[C] iff : ∃K,Z, P, V, t, Q, W, A, U

such that

(0) x = 〈K,Z,�, A, P, V, t, Q, W, U 〉 and x ∈ M0[Cl-2.1]

(1) Z is a cycle

(2) ∀k ∈ K ∀z ∈ Z:
∮

dU (k, z) = 0

As remarked, the other specialization Clausius considers in this part of the article
is completely independent of the previous one: In it, it is assumed that W takes a
particularly simple form: P dV. We may call it the ‘uniform pressure specialization’,
UP.

UP : x ∈ M[UP] iff : ∃K,Z, P, V, t, Q, W, A, U
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such that

(0) x = 〈K,Z,�, A, P, V, t, Q, W, U 〉 and x ∈ M0[Cl-2.1]

(1) ∀k ∈ K ∀z ∈ Z: dQ(k, z) = dU (k, z) + A · P (k, z) · dV (k, z)

As Clausius himself indicates, from this latter specialization one could obtain the
law of ideal gases as well as the laws for steam systems. This means that we can
embed one part of the previous theory-net Cl-1 into the new net Cl-2.1. This is a
typical move in a crystallization process.

The graph of the theory-net Cl-2.1 is accordingly (see Fig. 8.3).

IG

Mol

Mol'

V

V'

T0[Cl-2.1]

C UP

Figure 8.3

8.8 The basic theory-element of Clausius-2.2

As already noted, the theory-net Cl-2.2 is exclusively devoted to the most general
treatment of the ‘second principle’ as completely independent of the ‘first principle’.
And its intended domain of applications are solely cycles.

To begin with, Clausius provides an intuitive formulation of the ‘second prin-
ciple’ that he considers to be more general than the one attributed to previous
researchers (notably Carnot and Clapeyron): ‘Heat can never go from a cold to a
hotter body unless another transformation takes place that depends on the first one’
(Clausius, 1854: 134). Clausius sets himself the task of finding a mathematically
appropriate formulation of this principle. The first step consists in introducing the
new notion of ‘equivalence value’ (‘Aequivalenzwerth’) of a transformation (of
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heat into work or conversely). His proposal is

Equivalence value of W :Qf (t) = df Q · 1

T (t)

Here there is a new ‘anonymous’ function T, of which Clausius says: ‘T is an
unknown function of the temperature appearing in the equivalence values’ (Clau-
sius, 1854: 143). This is for us again an example of a T-theoretical magnitude.
Only at the end of the paper, Clausius suggests that T may simply be regarded as
the absolute temperature.

Before the new formulation of the ‘second principle’, Clausius establishes a
distinction between ‘reversible’ (‘umkehrbar’) and ‘irreversible’ (‘unumkehrbar’)
cycles. The text does not contain any precise definition of what these terms mean;
apparently, the reader is supposed to have a clear intuition of these notions. Anyway,
after a long and cumbersome argument, Clausius comes to the conclusion that the
formal condition for reversible cycles is∮

dQ

T
= 0

A specialization of this condition is Clapeyron’s equation

dT

dt

/
T = A

C

where C is the so-called ‘Carnot function’.
For irreversible cycles, Clausius concludes that the condition should be∮

dQ

T
> 0.

If we admit the ‘additional hypothesis’ (‘Nebenannahme’), that Clausius takes
from Regnault, according to which ‘an ideal gas, when expanding at constant
temperature, absorbs only the quantity of heat needed for the external work done’
(Clausius, 1854: 153), we obtain:

dQ

dV
= A · P

and if we add the ideal gas law, we get as a theorem

T = a + t, where a presumably is 273

That is why we can consider T to be the absolute temperature.
Clausius never explicitly formulates the fundamental law common to both

reversible and irreversible cycles but it is clear that this can be nothing but∮
dQ

T
≥ 0
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Let us proceed now to the structuralist representation of the various theory-elements
of Cl-2.2. First, it is to be noted that its conceptual framework is a conceptual
extension of Cl-1 since the models have to contain now a new magnitude, T.
Formally, this means that the models of Cl-1 reappear now as substructures of the
models of Cl-2.2, which have the form 〈K, Z, �, P, V, t, Q, W, T〉. These models
are determined by the fundamental law expressing the relationship between heat
and absolute temperature in all kinds of cycles.

Cl-2.2 : x ∈ M0[Cl-2.2] iff : ∃K,Z, P, V, t, Q, W, A, T , f Q, f W , f T

such that

(0) x = 〈K,Z,�, A, P, V, t, Q, W, T 〉
(1) Z is a cycle

(2) ∀k ∈ K ∀z ∈ Z : Q(k, z) = f Q(P (k, z), V (k, z), t(k, z))

(3) ∀k ∈ K ∀z ∈ Z : W (k, z) = f W (P (k, z), V (k, z), t(k, z))

(4) A > 0

(5) ∀k ∈ K ∀z ∈ Z : T (k, z) = f T (t(k, z))

(6) ∀k ∈ K

∮
dQ(k, z)

T (k, z)
· dz ≥ 0

8.9 Specializations

A first specialization concerns reversible cycles.

REV : x ∈ M[REV] iff :

(0) x ∈ M0[Cl-2.2]

(1) ∀k ∈ K

∮
dQ(k, z)

T (k, z)
· dz = 0

This specialization may, in turn, be specialized in order to obtain Clapeyron’s law.
For this, a new T-theoretical magnitude is introduced: ‘Carnot’s function’, C. In
this way, the elements of M[REV] become substructures of the Clapeyron models.

CLAP : x ∈ M[CLAP] iff :

(0) x = 〈K,Z,�, A, P, V, t, Q, W, T , C〉
(1) 〈K,Z, IR, A, P, V, t, Q, W, T 〉 ∈ M[REV]

(2) ∀k ∈ K ∀z ∈ Z:
1

T (k, z)
· dT (k, z)

dt(k, z)
= A

C(k, z)
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The other specialization line concerns irreversible cycles.

IRREV : x ∈ M[IRREV] iff :

(0) x ∈ M[Cl-2.2]

(1) ∀k ∈ K

∮
dQ(k, z)

T (k, z)
· dz > 0

From this, we may obtain a further specialization by admitting Regnault’s additional
hypothesis above-mentioned.

REGN : x ∈ M[REGN] iff :

(0) x ∈ M[IRREV]

(1) ∀k ∈ K ∀z ∈ Z :
dQ(k, z)

dV (k, z)
= A · P (k, z)

Within this same branch of the net, we may get still another specialization by
simply incorporating the ideal gas law we have already reconstructed, M[IG]. It is
not necessary to repeat its formulation here.

By combining M[REGN] with M[IG], that is, by constructing a specialization
common to both specializations that we may call ‘AT’ (for ‘absolute temperature’),
or in model-theoretic terms, by taking M[AT] = M[REGN] ∩ M[IG], the following
result may be obtained:

If x ∈ M[AT], then ∀k ∈ K ∀z ∈ Z:T (k, z) = 273 + t(k, z)

Accordingly, the theory-net Cl-2.2 has the form shown in Fig. 8.4:

T0[Cl-2.2]

C

IRREVREV

IGREGNCLAP

AT

Figure 8.4
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We may now compare the three theory-nets implicit in Clausius’s writings
examined in this chapter, Cl-1, Cl-2.1 and Cl-2.2. It is to be noted that some (but
not all) specializations of Cl-1 are embedded into the nets Cl-2.1 and Cl-2.2, while
some of Cl-2.1 are embedded into Cl-2.2.

T0[Cl-1]

T0[Cl-2.1] T0[Cl-2.2]

V

V'

V

V'

IG

Mol

Mol'

Mol'

G

IG

Mol

C UP C

IRREVREV

IGREGNCLAP

AT

Figure 8.5
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Reduction and renormalization

robert w. batterman

9.1 Introduction

In this chapter I want to consider the so-called reduction of thermodynamics to sta-
tistical mechanics from both historical and relatively contemporary points of view.
As is well known, most philosophers not working in the foundations of statistical
physics still take this reduction to be a paradigm instance of that type of interthe-
oretic relation. However, numerous careful investigations by many philosophers
of physics and physicists with philosophical tendencies show this view is by and
large mistaken. It is almost surely the case that thermodynamics does not reduce
to statistical mechanics according to the received view of the nature of reduction
in the philosophical literature. What is interesting is that, while not framing the
issue in these terms, J. Willard Gibbs can also be seen as being somewhat sceptical
about the possibility of a philosophical reduction of thermodynamics to statistical
mechanics. Gibbs’ scepticism is, of course well-known. Nevertheless, I think his
remarks bear further consideration given certain advances in understanding the
foundations of statistical physics.

I will first briefly run over some philosophical ground, outlining the received
approach to theory reduction as well as what I take to be a more promising con-
ception of reduction that parallels, to some extent the way physicists typically
speak of theory reduction. Following this I will discuss Gibbs’ famous caution in
connecting thermodynamical concepts with those from statistical mechanics. This
is presented in chapter XIV, ‘Discussion of Thermodynamic Analogies’, of his
book Elementary Principles in Statistical Mechanics. We will see that there are
several reasons Gibbs held back from identifying thermodynamic quantities such
as temperature and entropy with specific statistical mechanical quantities. I will
then present a sketch of a program for reduction that involves deep connections
between results in probability theory on limit theorems and the so-called real space
renormalization techniques that play such an essential role in understanding the

159
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universality of critical phenomena. The framework provides a way of unifying two
fundamental problems – the so-called equivalence of ensembles and the existence
of critical phases.

9.2 Philosophical reduction

Most contemporary views about reduction owe much to the seminal work of Ernest
Nagel. In The Structure of Science Nagel (1961:338) asserts that ‘reduction . . . is
the explanation of a theory or a set of experimental laws established in one area
of inquiry, by a theory usually though not invariably formulated for some other
domain’. Standard views about explanation hold that to explain some phenomenon
requires the derivation of a statement characterizing that phenomenon from laws
of some true theory. Thus, reduction, very roughly, involves the derivation of the
laws of the ‘reduced’ theory from the laws of the ‘reducing’ theory. In the case of
thermodynamics we have a reduction to statistical mechanics because the laws of
thermodynamics are (supposedly) derivable from those of statistical mechanics.

Of course, Nagel himself realized that to actually carry out such derivations
requires non-trivial work. Here is one major problem: In most cases the laws
of the reduced theory (thermodynamics) contain terms that do not appear in the
laws of the reducing theory (statistical mechanics). For example, while thermo-
dynamics talks of temperature and entropy, statistical mechanics does not. Some
kind of connection between the predicates appearing in the reduced theory and
those in the reducing theory (provided by so-called ‘bridge laws’) is required so
that a derivation of the laws of the one from the laws of the other will be pos-
sible. These bridge principles are essential, because explanation and reduction
are conceived to be arguments in a formal language. They are linguistic relations
that obtain between the theories understood as sets of sentences in that formal
language.

As I mentioned, it is commonplace to read that bridge laws or connections can
be found in the thermodynamics/statistical mechanics case. For instance, one often
sees that ‘temperature’ in thermodynamics is to be identified with ‘mean molecular
kinetic energy’. This is taken to be a paradigm example of the sort of bridge law
Nagel demands for reduction.

There are many reasons to be sceptical that a Nagelian or neoNagelian reduction
of thermodynamics to statistical mechanics is possible. One worry concerns the
status of the bridge laws. In one sense they seem to be statements of definition.
But surely they cannot be logical connections – statements true solely in virtue
of the meanings of the terms and, perhaps, knowable merely by reflection upon
those meanings. Another possibility is that the bridge principles are stipulated
conventions or coordinative definitions. A third possibility is that they express
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factual claims that essentially have the status of physical hypotheses. (Nagel, 1961:
354)

In the context of the reduction of thermodynamics these worries become acute.
The ‘temperature equals mean molecular kinetic energy’ bridge law identifies a
fundamentally non-statistical quantity with a fundamentally statistical quantity.
How is this supposed to work? Of course, this problem will arise as well for other
strictly thermodynamic predicates such as entropy.

Actually, the situation is even more dire. Even terms such as ‘pressure’ require
appropriate bridge laws. Surely it is correct to associate in some way the thermody-
namic pressure with some function of the number of collisions per unit area upon
the walls of the container. But which function? As Sklar points out,

there is, for a particular sample of gas at equilibrium, the actual momentum transferred by
the molecules . . . , and there is its average value per unit area per unit . . . time. On the other
hand, there is the quantity calculated for an ensemble of similarly constituted systems . . . ,
or, alternatively by looking for the most probable value of the relevant quantity in the
ensemble. Whereas the former sort of pressure, the feature of the individual system, will be
expected to fluctuate, the latter kinds of ensemble quantities . . . , will, of course, not. Here
fluctuations will show up as assimilated into the ensemble description by the calculation
of averages or most probable values for quantities, but the averages themselves are not the
sort of things to fluctuate.

(Sklar, 1993: 349–350)

From the point of view of these concerns about the philosophical understanding
of theory reduction, it is natural to interpret Gibbs’ famous chapter XIV, ‘Discussion
of Thermodynamic Analogies’ to be an investigation into the nature and status of the
bridge laws required for the reduction of thermodynamics to statistical mechanics.
Sklar, following the above discussion of the difficulties encountered in trying to
identify thermodynamic concepts with statistical mechanical concepts, says the
following:

It should not surprise us that Gibbs, when he came to associate ensemble quantities with
thermodynamic quantities in Chapter XIV of his book, spoke of the “thermodynamic
analogies” when he outlined how thermodynamic functional interrelations among quantities
were reflected in structurally similar functional relations among ensemble quantities. He
carefully avoided making any direct claim to have found what the thermodynamic quantities
“were” at the molecular dynamical level.

(Sklar, 1993: 350)

Gibbs was surely cautious and he did care about the connections between ther-
modynamics and statistical mechanics. But I think that this may not be the most
fruitful way to think about his caution or his approach to intertheoretic relations.
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9.3 Gibbs’ caution and the ‘non-equivalence’ of ensembles

In the Preface to Elementary Principles in Statistical Mechanics Gibbs (1981:
vi–vii) asserts that the laws of statistical mechanics for conservative systems of
finite degrees of freedom are exact. On the other hand, the laws of thermodynamics
as

empirically determined, express the approximate and probable behavior of systems of a
great number of particles, or more precisely, they express the laws of mechanics for such
systems as they appear to beings who have not the fineness of perception to enable them
to appreciate quantities of the order of magnitude of those which relate to single particles,
and who cannot repeat their experiments often enough to obtain any but the most probable
results.

(Gibbs, 1981: vi)

Further, the fact that these laws for finite systems are exact,

. . . does not make them more difficult to establish than the approximate laws for systems
of a great many degrees of freedom, or for limited classes of such systems. The reverse is
rather the case, for our attention is not diverted from what is essential by the peculiarities
of the system considered, and we are not obliged to satisfy ourselves that the effect of the
quantities and circumstances neglected will be negligible in the result.

(Gibbs, 1981: vii; my emphasis)

This last clause suggests that Gibbs recognizes that showing how the ‘approximate’
laws – by which he means the laws of thermodynamics – will emerge out of the
‘exact’ formulas for systems with finite and relatively small numbers of degrees
of freedom will be difficult. In addition, this passage suggests that something is to
be gained by not being distracted by specific details or peculiarities of the systems
under investigation.

I think this latter suggestion is completely correct, although odd in the circum-
stances. It suggests that the statistical approach is to be preferred to that of rational
thermodynamics, because we will focus on statistical properties rather than upon
specific features of individual systems. The odd part, is that for Gibbs the statis-
tical mechanical formulas for finite systems are exact, and so, presumably will
provide all of the details of the actual system of interest. Thus, from Gibbs’ point
of view exact expressions are those statistical mechanical expressions involving
the actual finite sums corresponding to the actual finite number of particles in the
system under investigation. From a more contemporary point of view, the notion
of an ‘exact’ expression has a different meaning: In that context one obtains exact
or precise results only by taking the thermodynamic limit where our inability to
discern the precise number of particles becomes irrelevant, and where sharp (i.e.
exact), as opposed to fluctuating, values emerge.
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Forty odd years later, Khinchin, in the context of discussing Gibbs’ priority in
the ‘systematic exposition of the foundations of statistical mechanics’, focuses on
the statistical point of view. He says that

It was precisely the necessity of a statistical foundation for the general laws of thermody-
namics that produced trends which found their expression in the construction of statistical
mechanics. To avoid making any special hypotheses about the nature of the particles it
became necessary in establishing a statistical foundation to develop laws which had to be
valid no matter what was the nature of those particles (within quite wide limitations).

(Khinchin, 1949: 3)

I think that Khinchin here is providing a more modern spin to Gibbs’ discussion
than is actually present in the discussion itself. Despite this, and as Khinchin
stresses, I think that Gibbs was one of the first to appreciate the idea that sometimes,
in the investigation and understanding of general principles or laws, too much
attention to the details can get in the way. Comparatively speaking, we are able
to easily formulate the laws of statistical mechanics because our ‘attention is not
diverted from what is essential’.

Gibbs discusses a number of reasons why it is important to avoid making
assumptions or hypotheses about the nature of the particles or systems under
investigation. These reasons, I believe, can fruitfully be partitioned into two classes:
pragmatic reasons and theoretical/fundamental reasons. Let me discuss these in
turn.

Gibbs was working at a time in which physics was beginning a period of what
Kuhn called ‘extraordinary’ science. The classical paradigm was beginning to
succumb to a number of anomalies whose ultimate resolution required the quantum
theory. Gibbs was well aware of these anomalies and they provided pragmatic
reasons for him to be sceptical of detailed hypotheses about the nature of the
systems. For example, Gibbs refers to the problem of a gas composed of diatomic
molecules for which according to the equipartition theorem there should be six
degrees of freedom sharing the energy, whereas experiments on the specific heat
of such a gas indicate that only five degrees of freedom apparently share in the
energy. The other example he mentions in several places concerns the phenomenon
of radiant heat. Here the problem is that the assumption that we are dealing with
systems of finite degrees of freedom, does not appear to be adequate for the
explanation ‘of the properties of bodies’ (Gibbs, 1981: 167).

These experimental and theoretical anomalies clearly contributed to Gibbs’ incli-
nation not to formulate specific hypotheses about the nature of various systems.
Surely, they were significant pragmatic factors relating to his caution toward pro-
viding ‘true’ as opposed to merely analogical connections between thermodynamic
concepts and statistical mechanical concepts.
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Nevertheless, as I noted, there is a more fundamental reason to eschew the mak-
ing of specific hypotheses. Paradoxically, it is also a reason, at least in retrospect, for
thinking that his caution and repeated disclaimers ultimately were not completely
warranted. I will call this fundamental worry the problem of the ‘non-equivalence
of ensembles’.

9.4 The canonical ensemble

As is well known, Gibbs’ canonical ensemble is appropriate for representing equi-
librium systems that can be considered to be in thermal contact with a large heat
bath at a fixed temperature. Here the idea is that each member of this ensemble
remains at constant energy but that the members take on all possible values for
energy. The demand that this ensemble represents statistical equilibrium is the
demand that the probability density ρ(q, p) be invariant over a region in phase
space under its dynamical evolution. Any function of phase that is constant along
a phase space trajectory (hence any function of the energy) satisfies this demand,
but Gibbs argues that one such function, in particular, has special features worthy
of representing thermodynamic equilibrium:

ρ = e
ψ−ε

� (9.1)

Here ε is the energy of a system and ψ and � are constants. Gibbs argues that one
should take the negative of the ‘index of probability’

− log ρ = −ψ − ε

�
(9.2)

to be analogous to the thermodynamic entropy and the modulus, �, to be analogous
to the temperature. Furthermore, Gibbs argued that the deviations in energy from
the mean value for energy in the ensemble should be small. In fact, he claims that
those deviations should be ‘of the same order of magnitude as the reciprocal of the
number of degrees of freedom, and therefore to human observation the individual
values are indistinguishable from the average values when the number of degrees of
freedom is very great’ (Gibbs, 1981: 168). In such a situation the deviations in the
index of probability from its mean will also be negligible in this operational sense.

9.5 The micro-canonical ensemble

Gibbs also discusses the micro-canonical ensemble1 which is appropriate for rep-
resenting equilibrium systems that can be considered to be thermally isolated from

1 Here we ignore the third important ensemble of Gibbs: The grand canonical ensemble which is appropriate for
the description of systems that can exchange particles with the environment.



Reduction and renormalization 165

the rest of the world. Here we have a collection of systems that all have the same
energy. In such an ensemble the quantity

log V (9.3)

is the analogue of the thermodynamic entropy where V is the ‘size’ or ‘volume’ (in
the natural measure) of the phase space region to which the possible micro-states of
the systems are confined by macroscopic constraints. The analogue of temperature
in the micro-canonical ensemble is the quantity

dε

d log V
(9.4)

Gibbs says

we have thus precisely defined quantities, and rigorously demonstrated propositions, which
hold for any number of degrees of freedom, and which, when the number of degrees of
freedom (n) is enormously great, would appear to human faculties as the quantities and
propositions of empirical thermodynamics.

(Gibbs, 1981: 169)

Nevertheless, it is well known that different quantities may approach the same form
in some appropriate limit, say, n → ∞.

There may be therefore, and there are, other quantities [other than the modulus, �, and the
index of probability, ψ−ε

�
,] which may be thought to have some claim to be regarded as

temperature and entropy with respect to systems of a finite number of degrees of freedom.
(Gibbs, 1981: 169)

Of course, one such set of quantities are those derived from the micro-canonical
distribution: Equations (9.4) and (9.3), respectively.

Gibbs takes the fact that different, exact, statistical physical quantities apparently
have equal claim to be the analogs of thermodynamic temperature and entropy to
be problematic. This is the ‘non-equivalence’ of ensembles and it is the theoretical
or fundamental reason to resist claims to have found the (statistical) mechanical
definition of those quantities.

9.6 Limiting reductions/limiting relations between theories

So Gibbs realized that in the thermodynamic limit certain quantities that differ for
finite systems will have the same limiting form. He considered this a difficulty and it
may be one reason that he focused on the exact statistical mechanical quantities for
finite n. On the other hand, he also repeatedly talks of the laws of thermodynamics
as being the approximate expressions of the exact statistical mechanical laws when
the number of degrees of freedom gets large. The idea that suggests itself here is
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that the limit of statistical mechanics, as the number of degrees of freedom goes
to infinity, should yield the continuum thermodynamic theory. Physicists often
express this connection as an instance of reduction, though not in the same way
as Nagel and his followers. On the physicists’ view statistical mechanics reduces
to thermodynamics (in the appropriate limit). Schematically we can represent this
conception of reduction as follows:

lim
ε→0

Tf = Tc (9.5)

In the present case we can (somewhat sloppily) let ε = 1/N where N is the number
of particles, and take Tf to be statistical mechanics and Tc to be thermodynamics.

Philosophers, as we have seen, typically talk of reduction going the other way –
that is, thermodynamics reduces to statistical mechanics via deductive derivation of
the laws of the former from those of the latter. On my view, these two conceptions
of reduction are related to one another. In fact, I believe that those cases where
a physicists’ limiting reduction holds – that is, where equality obtains in schema
(9.5) – are cases for which the philosophers’ conception of derivational reduction
will likely hold as well (Batterman, 1995; 2002b). This is because we can take the
limiting relations as providing us with something like the bridge laws appropriate
for Nagel-like reduction.2

But limiting reductions in which the equality of schema (9.5) hold are, in fact,
rare. Schema (9.5) will fail when the limiting relation is singular. That is to say,
that the limiting behaviour as ε → 0 is qualitatively different than the behaviour
at the limit when ε = 0. Singular limits do not mean that there are no interesting
connections between the theories. Usually, just the opposite. But in such cases I
have argued it is best to give up talk of ‘reduction’ altogether and to speak instead
of ‘intertheoretic relations’.

Now I do not believe that the historical evidence is sufficient to enable us to
decide whether Gibbs held a philosophical conception of reduction as deductive
derivation or whether he opted for the physicists’ limiting sense of reduction. I
doubt that he conceptualized the issues in this way, and there are places where,
with hindsight, he seems to be talking of each. Nevertheless, I would like to
investigate the fruitfulness of the approach to intertheoretic relations that focuses
on the importance of limits and asymptotic connections between theories.

I will focus on two issues. The first concerns the equivalence or non-equivalence
of ensembles. We have just seen that one reason for Gibbs’ scepticism is the
existence of finite distinct exact quantities that apparently have equal claim to be
identified with the thermodynamic concepts of entropy and temperature. Can one

2 However, these will typically be mathematical relations and not universal biconditionals of the sort Nagel and
others typically talk about.



Reduction and renormalization 167

resolve this problem by thinking of intertheoretic relations as limiting relations
between theories as opposed to regarding them as derivational Nagelian type rela-
tions? A second problem is, oddly, nowhere mentioned in Elementary Principles.
This is the issue of the existence and explanation of critical phenomena and phase
transitions. It is of crucial importance and Gibbs was surely aware of it. In fact,
I want to argue that the two problems are intimately related to one another. They
can both be treated using a similar strategy based upon some deep limit theorems
from probability theory. Furthermore, I hope to show that the fact that these two
problems are related is relevant to the possibility of realizing some kind of par-
tial reductive relation between thermodynamics and statistical mechanics after all.
More cautiously, perhaps, I intend to show that it is possible to assert something
stronger than a mere Gibbsian analogy between certain concepts in the two theories.

9.7 The renormalization group, the central limit theorem, and
the equivalence of ensembles

Gibbs was aware that in the thermodynamic limit there is a kind of equivalence of
ensembles. After all he states that there ‘may be more than one proposition relating
to finite vales of n, which approach the same limiting form for n = ∞’ (Gibbs,
1981: 169). As we have seen he takes this to be problematic. From a more modern
perspective, however – one which recognizes explicitly the essential role played by
the thermodynamic limit – this can very well be considered a virtue. The idea here is
that the equivalence of ensembles (to the extent that it can actually be demonstrated)
is evidence of a kind of universality. The thermodynamic phenomenology obtains
regardless of the exact statistical mechanical details.

One can see that this is to be expected by considering briefly Khinchin’s program
for statistical mechanics where the central limit theorem of probability plays a
crucial role. Khinchin focuses on specific kinds of functions defined on phase
space – so-called ‘sum functions’ – having the form

S(n) =
n∑

i=1

Si

He employs the central limit theorem to show that the dispersions of the suitably
normalized sum functions will, in the thermodynamic limit (n → ∞), be dis-
tributed according to the normal or Gaussian distribution. Thus we should expect
that phase functions of the right form – those that presumably represent thermody-
namic quantities – will be peaked around their mean values with root mean square
deviations proportional to n1/2.
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But the real question is why the Gaussian distribution should play such a fun-
damental role. Why should it emerge as the limiting distribution for statistical
systems in equilibrium, virtually regardless of the nature of the systems’ molecular
details and regardless of whether it is best represented using the canonical or the
micro-canonical distributions of Gibbs? To answer this, I will sketch an argument
from probability theory that employs the renormalization scheme developed by
Kadanoff, Fisher and Wilson. The connections between renormalization in statis-
tical mechanics and probability theory have been stressed in a series of articles in
the 1970s by Sinai, Cassandro, and, most forcefully, by Jona-Lasinio (Bleher and
Sinai, 1973; Jona-Lasinio, 1975; Cassandro and Jona-Lasinio, 1978; Sinai, 1978,
1982). My presentation here follows Sinai’s argument in (Sinai, 1992: Lecture 15).

Suppose we have a sequence of random variables Si such as spins on a one
dimensional lattice. Suppose further that the Si’s have finite second moments and
are independent and identically distributed with the mean values, E(Si) = 0.3

Consider a subsequence of the integers, np = 2p, and define the random variable,
Sp – a sum function of the spins – as follows:

Sp = 1

2p/2

2p∑
i=1

Si (9.6)

It follows that

Sp+1 = 1/
√

2
(
S

′
p + S

′′
p

)
(9.7)

where

S
′
p = 1

2p/2

2p∑
i=1

Si and S
′′
p = 1

2p/2

2p+1∑
i=2p+1

Si

For example, let p = 2 then

S
′
2 = 1

2

4∑
i=1

Si = 1

2
(S1 + S2 + S3 + S4) (9.8)

S
′′
2 = 1

2

8∑
i=5

Si = 1

2
(S5 + S6 + S7 + S8) (9.9)

From (9.6) we have

S3 = 1

23/2
(S1 + · · · + S8)

3 E(·) represents the expectation. The assumption of independence will be relaxed later.
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But we see from (9.8) that (S1 + S2 + S3 + S4) = 2S
′
2 and from (9.9) that (S5 +

S6 + S7 + S8) = 2S
′′
2. Hence,

Sp+1 = S3 = 1√
2

(
S

′
2 + S

′′
2

)
So, S

′
p and S

′′
p are independent and identically distributed random variables. The

probability distribution for the sum of two independent random variables ξ1, ξ2,
(that is, for the random variable ξ = ξ1 + ξ2) is given by the convolution of their
individual distribution functions. Thus if F1 is the distribution function for ξ1 and
F2 is the distribution function for ξ2, then

F1,2(x) =
∫ ∞

−∞
F1(x − u) dF2(u) (9.10)

is the distribution function for the random variable ξ . Now, the random variables S
′
p

and S
′′
p are not only independent but they are also identically distributed. Let Fp be

the distribution function for Sp – Equation (9.6) which is this common distribution
function. Then from (9.10) we have

Fp+1 =
∫ ∞

−∞
Fp(

√
2x − u) dFp(u) (9.11)

which is the distribution function for the random variable Sp+1 (recall (9.7)).
It follows that for any p, the distribution function Fp for the variable Sp can
be obtained by iterating this non-linear convolution operation starting from the
distribution function F0 for S0 – the random variable for an individual spin. Thus,
let

T F =
∫ ∞

−∞
F (

√
2x − u) dF (u) (9.12)

for any distribution function F then Fp+1 = T Fp and Fp = T pF0. The operator T
is the analogue, for the current case, of the renormalization group operator.

It can be shown that the Gaussian distribution,

G(x) = 1√
2π

∫ x

−∞
e− u2

2 du

is a fixed point of the transformation T. In other words, T G = G. The emergence
and the ubiquity of the Gaussian distribution is related to the stability of this
fixed point in the space of distributions and that stability can be investigated by
examining the stability of the linearization, L, of the non-linear operator T in the
neighbourhood of the fixed point G.
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Sinai shows that the linear operator L at the point G is given by

Lh =
√

2√
π

∫ ∞

−∞
h

(
u + x√

2

)
e− u2

2 du

One then determines the spectrum and eigenfunctions of L. It turns out that the
eigenfunctions are Hermite polynomials h = Pk(x) with eigenvalues

uk = 21− k
2

for k = 0, 1, 2, . . . . It follows that u0, u1 > 1, u2 = 1, and for all k > 2, uk < 1.
Thus, the ‘directions’ P0 and P1 are unstable, P2 is marginal and all other direc-
tions are stable. This analysis tells us that the fixed point G is stable for linear
approximation with respect to perturbations that lie in the class of distribution
functions F with zero expectation and finite variance (Sinai, 1992: 132). And so, a
large class of distribution functions will behave just like the Gaussian in the limit
np → ∞. This class of distributions, in the jargon of renormalization group theory,
is a ‘universality class’.

The upshot of this analysis for the problem of the equivalence of ensembles
is that we must expect those finite systems distributed according to the micro-
canonical distribution, and those distributed according to the canonical distribution,
to behave in the same way as the number of their components gets large. In fact, we
can use the Gaussian distribution to calculate the dispersions of various quantities
from their means for large finite systems of either type. A further consequence
of this form of argument is that in order to solve certain problems regarding
universal behaviour, one need only work with the most convenient ‘system’ in
the relevant universality class. Nigel Goldenfeld calls such a system a ‘minimal
model’ and asserts that it is a model that ‘most economically caricatures the
essential physics’ (Goldenfeld 1992: 33). In the current context, Gibbs’ insistence
that for most problems it is easier to calculate using the canonical distribution, is
an indication that the canonical distribution may be considered to be a minimal
model.4

While Gibbs took the existence of the different quantities associated with the
different ensembles – each apparently having equal claim to be analogues of
thermodynamic temperature and entropy – to be a problem, from the current
perspective, we should take their existence to be a virtue: In the thermodynamic
limit, we can demonstrate the equivalence of the ensembles, and we can show that
calculations with either ensemble will yield the thermodynamic phenomenology
that we are after. On this way of thinking, the question of what quantity is to be

4 See (Batterman, 2002a) for a discussion of minimal models and asymptotics.
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offered as the definition of thermodynamic entropy, say, is not really well-formed.
In the context of limiting intertheoretic relations, the study of the thermodynamic
limit renders such a question moot.

I will say more about this shortly. But first we must address some obvious
questions and objections to the argument presented above. On the one hand,
Sinai’s demonstration of the emergence and ubiquity of the Gaussian demon-
stration assumes that the random variables are independent. To what extent is this
assumption legitimate for real thermodynamic systems? On the other hand, it also
assumes that we are working with a particular subsequence of the integers, np = 2p.
What is the role of this assumption? Finally, how does this entire argument, one
which is purely mathematical, relate to real systems?

Let us take up the second question first. It is absolutely crucial. The particular
subsequence np = 2p was chosen so that we would have the right normalization
factor for the sum function – for the random variable Sp. One of Kadanoff’s main
insights was that as we sum over blocks of spins (which is, in effect, what we
are doing by considering sum functions) and then try to replace these sums with
individual block-spins (averages perhaps) we need to try to keep the (Hamiltonian)
structure looking the same at these different scales. Equivalently, we need to make
sure that the partition function for the original lattice is similar to that for the lattice
of block-spins. One of the main difficulties of employing the renormalization
techniques in investigating the behaviour of model systems is to determine exactly
how one needs to rescale (or normalize) a collective variable like

∑
Si so as to

arrive at reasonable results. In fact, this is largely the art of the renormalization
group approach. In the example above, this difficult problem is taken care of by
employing that very special subsequence of the integers to form our ‘blocks’ of
spins. This allows us to write down, without any difficulty, the ‘renormalization
group equation’, (9.12), for our distribution functions. In effect, the use of the
special subsequence of the integers gives us the proper normalization for the
variables Sp and determines the factor

√
2 that appears in Equation (9.12). In

physical applications, however, we do not have the luxury of beginning with a
solution to how the block-spins are to be normalized.

The first problem concerns the fact that the demonstration of the universality of
the Gaussian distribution relies upon the fact that the random variables considered
are independently distributed. Of course, this is far from true even for the simplest
of thermodynamic systems: For example, the kinetic energies of molecules in an
isolated gas are correlated with one another as a result of collisions and the fixed
total energy of the gas. This poses a problem for Khinchin’s program – one of which
he was well-aware. He tries to deal with it by insisting that we must really think
of the particles (in a real gas) as being ‘only approximately isolated energetically
components’. When being precise, however, we must allow for correlations between
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the components that would, strictly speaking, block the ability to use the central
limit theorem. He says,

inasmuch as forces of interaction between particles manifest themselves only at very small
distances, such mixed terms in the expression of energy, representing mutual potential
energy of particles, will be (in the great majority of points of the phase space) negligible as
compared with the kinetic energy of particles or with the potential energy of external fields.
In particular, they will contribute very little in evaluating various averages. . . . However,
these mixed terms that are neglected, from the point of principle play a very important role,
since it is precisely their presence that assures the possibility of an exchange of energy
between the particles, on which is based the whole of statistical mechanics.

(Khinchin, 1949: 43–43)

This is hardly a satisfying response to the problem of interaction or correlation:
‘The entire success of statistical mechanics depends upon such interactions, but we
need to ignore them completely because they will be small’.

In fact, though, it is possible to generalize the above argument for the universality
of the Gaussian distribution to sequences of dependent random variables, provided
that the dependence is not too strong. This is a truly remarkable feature of the central
limit theorem. One can show that limiting Gaussian behaviour is to be expected
even for a large class of dependent random variables. Without going into details,
let me discuss the degree of robustness of such central limiting behaviour and when
one might actually expect it to fail. To this end, consider once again a sequence
of independent and identically distributed random variables Si (i = 1, 2, . . .).5

Suppose the Si’s are centred at the origin and have finite variance. This means,
respectively, that

E(Si) = 0

E(S2
i ) = σ 2

Consider the sum function SN = ∑N
i=1 Si . The mean square deviation of SN is

given by

E(S2
N ) =

N∑
i=1

E(S2
i ) = Nσ 2 (9.13)

If we now suppose that the variables Si are not independent (9.13) needs to be
modified to reflect the contribution of correlations to this average. So write

E(S2
N ) =

N∑
i,j=1

E(SiSj ) =
N∑

i,j=1

R(i, j ) (9.14)

5 Here I follow the discussion in Cassandro and Jona-Lasinio (1978: 914–916).
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where R(i, j) is the correlation function of the sequence. In physical applications
we typically consider only stationary sequences which means that there is a kind
of translation invariance – no privileged i in the sequence. Assuming stationarity
we get6

E(S2
N ) =

N∑
i,j=1

R(i, j ) = NR(0) + 2
N∑

l=1

(N − l)R(l) (9.15)

The first term reduces to Nσ 2 when the variables are independent and so represents
the contributions to the fluctuations of the variable SN if the sequence had been
independent with variance R(0). The second term is non-zero when correlations
between the Si exist. Cassandro and Jona-Lasinio consider several possibilities for
the behaviour of R(l) (Cassandro and Jona-Lasinio, 1978; 915). The two most
relevant to our discussion are the following:

N∑
l=1

R(l)
N→∞−→ R̄ < ∞ (9.16)

and
N∑

l=1

R(l)
N→∞−→ ∞ (9.17)

When (9.16) holds it is clear that for large N, the mean square deviation of SN,
E(S2

N ), will still be proportional to N for large N and the
√

N fluctuation law will
still hold. Cassandro and Jona-Lasinio say that in this situation the variables Si are
‘weakly dependent’. Weakly dependent systems of variables satisfy the condition
of ‘strong mixing’ that, physically, is related to an exponential decay of correlations
with distance. In such cases it is possible to show that the distribution functions
of these weakly dependent random variables will flow, under the transformation T
to the Gaussian fixed point. Thus, this answers the worry about using the central
limit theorem in situations where independence fails. That is to say, central limiting
behaviour is quite robust and the independence condition in the theorem as it is
usually formulated can be considerably weakened. There is, therefore, no need to
accept Khinchin’s somewhat handwaving and inconsistent solution to the problem
of interacting components.

When (9.17) holds

E(S2
N )

N
→ ∞

6 Stationarity entails that l will be the same for any pairs (i, j ) with equal separation (|i − j |).
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for large N and the fluctuations will be greater than
√

N . This is the situation
of ‘strongly dependent’ variables. Now if we think of the variables Si as spins
on a d-dimensional lattice Z

d , we expect stationarity to hold which is to say that
R(i, j) = R(i − j) where i and j are d-dimensional lattice vectors. In such a case,
(9.17) is expressed as follows: ∑

l∈Zd

R(l) = ∞ (9.18)

This says that the correlation length between spins on the lattice is infinite.
In statistical mechanics this means that the system is at a point of second order
phase transition – a critical point. This takes us directly to what very well may
be another fundamental reason for Gibbs’ caution in identifying thermodynamic
quantities with (statistical) mechanical features of systems – the existence of critical
phenomena.

Before turning to this let me briefly take stock of the status of reductive relations
between thermodynamics and statistical mechanics up to this point. The argument
of this section is designed to show that, pace Gibbs, we should not really worry
about the fact that different ‘precisely defined quantities’ have some kind of equal
claim to be ‘regarded as temperature and entropy with respect to systems of a
finite number of degrees of freedom’ (Gibbs, 1981: 169). In fact, the canonical
and micro-canonical distributions will yield the same results in the thermodynamic
limit. They both lie within the basin of attraction of the Gaussian distribution – in the
Gaussian universality class – under the probabilistic version of the renormalization
group transformation sketched above. So Gibbs is being overly cautious from the
point of view being advocated here.

By considering the thermodynamic limit in the context of intertheoretic rela-
tions, we do in effect demonstrate the existence of a limiting connection between
statistical mechanics and thermodynamics akin to the physicists’ schema (9.5) for
reduction. That is to say that schema (9.5) holds where Tf is statistical mechanics
and Tc is thermodynamics and ε = 1/N .7 The proof of the equivalence of the
micro-canonical and the canonical ensembles in the thermodynamic limit, together
with the probabilistic renormalization group argument given above, provides the
required limiting connections between the two theories. Given this, we should
expect something like a philosopher’s derivational reduction to obtain. However,
contrary to the Nagelian point of view which requires bridge laws identifying a
thermodynamic quantity with a unique statistical mechanical quantity, we instead
are able only to provide an association between the thermodynamical properties,

7 More precisely, the thermodynamic limit is the limit in which N → ∞, the volume V → ∞ with the constraint
that the density N/V → constant.
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such as temperature and entropy, and a universality class of statistical mechanical
structures.

9.8 Critical phenomena: the inequivalence of ensembles

While we seem to have been successful in finding a limiting connection between
statistical mechanics and thermodynamics, there are prima facie reasons to believe
that such a reduction cannot hold in general. This is because, the limiting schema
(9.5) fails to hold for every thermodynamic phase. The existence of phase transitions
and critical points guarantee that a smooth limiting relationship between the theories
cannot hold everywhere.

Physically this failure of smooth limiting behaviour is related to the divergence
of various quantities at the critical points. For instance, at a critical point (Pc, Vc, Tc)
the compressibility

κ ≡
[
−V

(
∂P

∂V

)
T

]−1

(9.19)

becomes infinite.
From a modern perspective this failure can be related to the inequivalence of the

micro-canonical and canonical ensembles at certain phases. Giovanni Gallavotti
takes this to be a virtue of statistical mechanics rather than a defect.

. . . Rather than being an obstacle to the microscopic formulation of thermodynamics, [this
inequivalence] shows the possibility that statistical mechanics can be a natural frame in
which to study the phase transition phenomenon. . . .

We can therefore conclude, in the case . . . of the canonical and microcanonical ensem-
bles, that they provide equivalent descriptions of the system thermodynamics in the corre-
spondence of the parameter values to which no phase transition is associated. In the other
cases, the possible nonequivalence [inequivalence] cannot be considered a defect of the
theory, but it can be ascribed to the fact that, when equivalence fails, the elements of the two
statistical ensembles that should be equivalent are not because they describe two different
phases that may coexist (or different mixtures of coexisting phases).

(Gallavotti, 1999: 74–75)

Now Gibbs’ work on thermodynamics, prior to writing Elementary Principles
in Statistical Mechanics, focused largely on representing (geometrically and ana-
lytically) different phases of thermodynamic systems including places of phase
transitions and critical points.8 It is inconceivable to me that he was not aware
of the problem that the existence of critical states raises for identifying precisely
defined (statistical) mechanical properties with thermodynamic properties. That

8 See, for example Gibbs (1928) and other papers in Volume One of his Collected Works.
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is, I think one major factor behind Gibbs’ caution – a major reason he allowed
himself to speak only of thermodynamic analogies and not of identities – was the
recognition that such identities will clearly fail at critical phases.

It is, therefore, extremely odd that Gibbs makes no mention of phase transitions
and critical phenomena in Elementary Principles in Statistical Mechanics. This
omission has been noted elsewhere by A. S. Wightman. Wightman states that

there is one aspect of the thermodynamic limit that Gibbs does not emphasize. That is the
appearance of phase transitions between distinct thermodynamic phases. Such sharp phase
transitions do not occur in finite systems . . . . It is only in the thermodynamic limit that
sharp phase transitions appear. A little more pedagogical zeal by Gibbs on this point would
have saved some of the generations that followed considerable time.

(Wightman, 1989: 34)

It is certainly true that one can only find sharp (non-analytic) phase transitions in
the thermodynamic limit. It is also true that that limit is singular on lines of phase
transitions and at critical points.

As Gallavotti has noted, the equivalence of the ensembles in the thermodynamic
limit can fail, and when it does, it means that the system is at criticality. We
can no longer expect Gaussian behaviour to emerge as a limiting distribution in
the iterative renormalization group Equation (9.12). Some have argued that this
situation is an indication that we cannot expect general reductive limiting relations
between thermodynamics and statistical mechanics to obtain.9 However, if we take
the inequivalence of the ensembles, and the existence of critical phenomena, to be
two sides of the same coin, as Gallavotti suggests, then perhaps this pessimistic
assessment is too quick. In this section, I would like to suggest that the probabilistic
interpretation of the renormalization group provides a mathematical framework
with which to investigate both sides of this coin using the same methodology. We
shall see that the divergences and singularities at critical phases are not genuine
obstacles to some kind of general limiting (reductive?) relation between the theories
after all. Rather than give up on intertheoretic reduction in this case, we just need to
recognize how involved it really is, and how different the reductive relation really
is from the traditional philosophical conception.

We have seen that Gaussian limiting behaviour fails when the random variables
Si are strongly dependent. This is the situation expressed by Equation (9.17),
generally, and by Equation (9.18) for the case of spins on a d-dimensional lattice.
Equivalently, given Equation (9.14), this means that the variance of the distribution
functions for the sum functions or block-spins is infinite. Consider a generalization

9 I, for one, have been a major proponent of this point of view.
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(one that takes correlations into consideration) of the iterative scheme (9.11):10

Fp+1 = gN (x, a)
∫ ∞

−∞
Fp(a−1x − u) dFp(u) (9.20)

When the variables are strongly dependent gN (x, a) → g∞(x, a) as N → ∞ and
this equation will, in that limit, have non-Gaussian solutions. That is, there will be
limiting distributions F ∗ satisfying the fixed point equation

T F ∗ = F ∗

for the relevant renormalization group transformation analogous to (9.12):

T F = g∞(x, a)
∫ ∞

−∞
F∞(a−1x − u) dF∞(u) (9.21)

Under the assumption that a fixed point solution to this equation exists, the value
of the parameter a will determine the critical exponent α 	= 1/2 that characterizes
the nature of this non-Gaussian limiting distribution as well as the form of the
required normalization. If we assume that the correlation R(l) exhibits power law
behaviour R(lα) ∼ l−α and that

∑N
l=1 R(l) ∼ ∑N

l=1 l−α → ∞ as N → ∞, then
from Equation (9.15) we have

E(S2
N ) → N2−α

as N → ∞.
The point of all of this is the following: There do exist non-Gaussian proba-

bility distributions that are stable limit distributions under transformations of the
form (9.21).11 These distributions represent fixed points of the probabilistic renor-
malization group transformation for strongly dependent random variables. Strong
dependence is exactly what we expect in real systems at criticality: It is reflected
in the divergence of the correlation length. By generalizing the argument of the
previous section, it is possible to show that these fixed points have large basins of
attraction reflecting the fact that at criticality a wide variety of distributions will all
exhibit the same, non-Gaussian, behaviour in the limit N → ∞.

In effect, this solves the critical phenomenon problem. We can explain the univer-
sality (the virtual independence of behaviour from microscopic detail) of systems at
criticality. The very same strategy that can be used to show that the micro-canonical
and canonical distributions behave like Gaussians in the thermodynamic limit is
used to explain the universal non-Gaussian behaviour of systems at criticality.

10 The assumption that something like the convolution equation for distribution function of a sum of two random
variables holds, is the essence of the renormalization group approach.

11 Stability here means that a block random variable (a block-spin or sum function) with distribution function
F can be split into the sum of two block random variables of arbitrary relative size having a probability
distribution of the same type; namely, F. Recall Equation (9.7).
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9.9 Conclusion

First, a note about my use of the terms ‘non-equivalence’ and ‘inequivalence’ of
ensembles. I use ‘non-equivalence’ in the context of Gibbs’ recognition that the
finite exact quantities calculated with respect to the micro-canonical and canonical
ensembles are different. As noted, he took this to be a reason for scepticism about
having found the right statistical mechanical quantity to represent the relevant
thermodynamic quantity. I use ‘inequivalence’ in the context of infinite systems
(that is, in the thermodynamic limit) where, for critical phases, the micro-canonical
and canonical ensembles yield different results.

Second, I have argued that the best understanding of intertheoretic relations
between statistical mechanics and thermodynamics is to be had by investigating
the limiting relations, both regular and singular that can be expressed in terms of
schema (9.5). We can say (with various qualifications12) that away from critical
points and phase transitions, statistical mechanics does reduce to thermodynamics
in the thermodynamic limit. And, we can say that there does exist a kind of
identification of certain thermodynamic quantities such as temperature and entropy
with universality classes of statistical mechanical quantities. In this context – that is,
from the modern perspective of the success of renormalization group arguments –
we see that Gibbs need not have been so cautious regarding the status of the
connections between mechanical quantities and thermodynamic quantities. The
existence of the thermodynamic limit, and the demonstration of the equivalence of
ensembles, provides evidence that the question of which ensemble quantity is really
to be identified with thermodynamic entropy, say, may not even be an important
question to ask.

On the other hand, Gibbs was an expert on phase transitions and critical phenom-
ena. I think that he must have understood that such phenomena present a problem
for connecting the two theories. In his interest to avoid saying anything false, he
did not raise the issue in his book. From the point of view I have been advocat-
ing, his understanding this problem is tantamount to recognizing that the limiting
relationship between statistical mechanics and thermodynamics as 1/N → 0 is
not everywhere regular. Despite this, the framework provided by the probabilis-
tic interpretation of renormalization group argument indicates that it is possible
to employ these techniques to connect both non-critical and critical thermody-
namics to an underlying statistical mechanics. Both problems – the equivalence
of ensembles and the inequivalence of ensembles – receive a unified, coherent
treatment.

12 These are, in fact, serious qualifications that may lead us ultimately to deny anything like a Nagelian reduction
of the full theory of thermodynamics to statistical mechanics. See Sklar (1993: Chapter 9).
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Irreversibility in stochastic dynamics∗

jos uff ink

10.1 Introduction

Over recent decades, some approaches to non-equilibrium statistical mechanics,
that differ decidedly in their foundational and philosophical outlook, have never-
theless converged in developing a common unified mathematical framework. I will
call this framework ‘stochastic dynamics’, since the main characteristic feature
of the approach is that it characterizes the evolution of the state of a mechanical
system as evolving under stochastic maps, rather than under a deterministic and
time-reversal invariant Hamiltonian dynamics.1

The motivations for adopting this stochastic type of dynamics come from at least
three different viewpoints.

(1) ‘Coarse graining’ (cf. van Kampen, 1962; Penrose, 1970): In this view
one assumes that on the microscopic level the system can be characterized as a
(Hamiltonian) dynamical system with deterministic time-reversal invariant dynam-
ics. However, on the macroscopic level, one is only interested in the evolution of
macroscopic states, i.e. in a partition (or coarse graining) of the microscopic phase
space into discrete cells. The usual idea is that the form and size of these cells are
chosen in accordance with the limits of our observational capabilities.

On the macroscopic level, the evolution now need no longer be portrayed as
deterministic. When only the macro-state of a system at an instant is given, it is in
general not fixed what its later macro-state will be, even if the underlying micro-
scopic evolution is deterministic. Instead, one can provide transition probabilities,
that specify how probable the transition from any given initial macro-state to later
macro-states is. Although it is impossible, without further assumptions, to say any-
thing general about the evolution of the macroscopically characterized states, it is

∗
This chapter is an excerpt of a longer discussion in (Uffink 2007).

1 Also, the name has already been used for precisely this approach by Sudarshan and coworkers, cf. (Sudarshan
et al. 1961, Mehra and Sudarshan 1972).
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possible to describe the evolution of an ensemble or a probability distribution over
these states, in terms of a stochastic process.

(2) ‘Interventionism’ or ‘open systems’ (cf. Blatt, 1959; Davies, 1976; Lindblad,
1976, Lindblad, 1983; Ridderbos, 2002): on this view, one assumes that the system
to be described is not isolated but in (weak) interaction with the environment.
It is assumed that the total system, consisting of the system of interest and the
environment can be described as a (Hamiltonian) dynamical system with a time-
reversal invariant and deterministic dynamics. If we represent the state of the system
by x ∈ �(s) and that of the environment by y ∈ �(e), their joint evolution is given by a
one-parameter group of evolution transformations, generated from the Hamiltonian
equations of motion for the combined system: Ut : (x, y) �→ Ut (x, y) ∈ �(s) × �(e).
The evolution of the state x in the course of time is obtained by projecting, for each
t, to the coordinates of Ut (x, y) in �(s); call the result of this projection xt. Clearly,
this reduced time evolution of the system will generally fail to be deterministic, e.g.
the trajectory described by xt in �(s) may intersect itself. Again, we may hope that
this indeterministic evolution can nevertheless, for an ensemble of the system and
its environment, be characterized as a stochastic process, at least if some further
reasonable assumptions are made.

(3) A third viewpoint is to deny (Mackey, 1992; 2001), or to remain agnostic
about (Streater, 1995), the existence of an underlying deterministic or time-reversal
invariant dynamics, and simply regard the evolution of a system as described by a
stochastic process as a new fundamental form of dynamics in its own right.

While authors in this approach thus differ in their motivation and in the interpre-
tation they have of its subject field, there is a remarkable unity in the mathematical
formalism adopted for this form of non-equilibrium statistical mechanics. The hope,
obviously, is to arrange this description of the evolution of mechanical systems in
terms of a stochastic dynamics in such a way that the evolution will typically display
‘irreversible behaviour’: i.e. an ‘approach to equilibrium’; that a Boltzmann-like
evolution equation holds; that there is a stochastic analogy of the H-theorem, etc.
In short, one would like to recover the autonomy and irreversibility that thermal
systems in non-equilibrium states typically display.

We will see that much of this can apparently be achieved with relatively little
effort once a crucial technical assumption is in place: that the stochastic process is
in fact a homogeneous Markov process, or, equivalently, obeys a so-called master
equation. Much harder are the questions of whether the central assumptions of this
approach might still be compatible with an underlying deterministic time-reversal
invariant dynamics, and in which sense the results of the approach embody time-
asymmetry. In fact we shall see that conflicting intuitions on this last issue arise,
depending on whether one takes a probabilistic or a dynamics point of view towards
this formalism.
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From a foundational point of view, stochastic dynamics promises a new approach
to the explanation of irreversible behaviour that differs in interesting ways from the
more orthodox Hamiltonian or dynamical systems approach. In that approach, any
account of irreversible phenomena can only proceed by referring to special initial
conditions or dynamical hypotheses. Moreover, it is well-known that an ensemble
of such systems will conserve (fine-grained) Gibbs entropy so that the account
cannot rely on this form of entropy for a derivation of the increase of entropy.
In stochastic dynamics, however, one may hope to find an account of irreversible
behaviour that is not tied to special initial conditions, but one that is, so to say, built
into the very stochastic-dynamical evolution. Further, since Liouville’s theorem is
not applicable, there is the prospect that one can obtain a genuine increase of Gibbs
entropy from this type of dynamics.

As just mentioned, the central technical assumption in stochastic dynamics is
that the processes described have the Markov property.2 Indeed, general aspects of
irreversible behaviour pour out almost effortlessly from the Markov property, or
from the closely connected ‘master equation’. Consequently, much of the attention
in motivating stochastic dynamics has turned to the assumptions needed to obtain
this Markov property, or slightly more strongly, to obtain a non-invertible Markov
process (Mackey, 1992). The best-known specimen of such an assumption is van
Kampen’s (1962) ‘repeated randomness assumption’. And similarly, critics of this
type of approach (Sklar, 1993; Redhead, 1995; Callender, 1999) have also focused
their objections on the question just how reasonable and general such assumptions
are (cf. Section 10.5).

I believe both sides of the debate have badly missed the target. Many authors
have uncritically assumed that the assumption of a (non-invertible) Markov process
does indeed lead to non-time-reversal-invariant results. As a matter of fact, however,
the Markov property (for invertible or non-invertible Markov processes) is time-
reversal invariant. So, any argument to obtain that property need not presuppose
time-asymmetry. In fact, I will argue that this discussion of irreversible behaviour
as derived from the Markov property suffers from an illusion. It is due to the habit of
studying the prediction of future states from a given initial state, rather than studying
retrodictions towards an earlier state. As we shall see, for a proper description of
irreversibility in stochastic dynamics one needs to focus on another issue, namely
the difference between backward and forwards transition probabilities.

In the following sections, I will first (Section 10.2) recall the standard defini-
tion of a homogeneous Markov process from the theory of stochastic processes.
Section 10.3 casts these concepts in the language of dynamics, introduces the

2 Some authors argue that the approach can and should be extended to include non-Markovian stochastic processes
as well. Nevertheless I will focus here on Markov processes.
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master equation, and discusses its analogy to the Boltzmann equation. In Section
10.4, we review some of the results that prima facie display irreversible behaviour
for homogeneous Markov processes. In Section 10.5 we turn to the physical moti-
vations that have been given for the Markov property, and their problems, while
Section 10.6 focuses on the question how seemingly irreversible results could have
been obtained from time-symmetric assumptions. Finally, Section 10.7 argues that
a more promising discussion of these issues should start from a different definition
of reversibility of stochastic processes.

10.2 The definition of Markov processes

To start off, consider a paradigmatic example. One of the oldest discussions of a
stochastic process in the physics literature is the so-called ‘dog flea model’ of P.
and T. Ehrenfest (1907).

Consider N fleas, labelled from 1 to N, situated on either of two dogs. The
number of fleas on dog 1 and 2 are denoted as n1 and n2 = N − n1. Further, we
suppose there is an urn with N lots carrying the numbers 1, . . . , N respectively.
The urn is shaken, a lot is drawn (and replaced), and the flea with the corresponding
label is ordered to jump to the other dog. This procedure is repeated every second.

It is not hard to see that this model embodies an ‘approach to equilibrium’ in
some sense: Suppose that initially all or almost all fleas are on dog 1. Then it is very
probable that the first few drawings will move fleas from dog 1 to 2. But as soon
as the number of fleas on dog 2 increases, the probability that some fleas will jump
back to dog 1 increases too. The typical behaviour of, say, |n1 − n2| as a function
of time will be similar to Boltzmann’s H-curve, with a tendency of |n1 − n2| to
decrease if it was initially large, and to remain close to the ‘equilibrium’ value
n1 ≈ n2 for most of the time. But note that in contrast to Boltzmann’s H-curve in
gas theory, the ‘evolution’ is here entirely stochastic, i.e. generated by a lottery,
and that no underlying deterministic equations of motion are provided.

Generally speaking, a stochastic process is defined as a probability measure P
on a measure space X, whose elements will here be denoted as ξ , on which there are
infinitely many random variables Yt, with t ∈ R (or sometimes t ∈ Z). Physically
speaking, we interpret t as time, and Y as the macroscopic variable(s) characterizing
the macro-state – say the number of fleas on a dog, or the number of molecules
with their molecular state in some cell of µ-space, etc. Further, ξ represents the
total history of the system which determines the values of Yt (ξ ). The collection Yt

may thus be considered as a single random variable Y evolving in the course of
time.

At first sight, the name ‘process’ for a probability measure may seem somewhat
unnatural. From a physical point of view it is the realization, in which the random
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variables Yt attain the values Yt (ξ ) = yt that should be called a process. In the
mathematical literature, however, it has become usual to denote the measure that
determines the probability of all such realizations as a ‘stochastic process’.

For convenience we assume here that the variables Yt may attain only finitely
many discrete values, say yt ∈ Y = {1, . . . , m}. However, the theory can largely
be set up in complete analogy for continuous variables.

The probability measure P provides, for n = 1, 2, . . . , and instants t1, . . . , tn

definite probabilities for the event that Yt at these instants attains certain values
y1, . . . , yn:

P(1)(y1, t1)

P(2)(y2, t2; y1, t1)
...

P(n)(yn, tn; . . . ; y1, t1) (10.1)
...

Here, P(n)(yn, tn; . . . ; y1, t1) stands for the joint probability that at times t1, . . . , tn

the quantities Yt attain the values y1, . . . , yn, with yi ∈ Y . It is an abbreviation for

P(n)(yn, tn; . . . ; y1, t1) := P ({ξ ∈ X : Ytn(ξ ) = yn & · · · & Yt1 (ξ ) = y1})
(10.2)

Obviously the probabilities (10.1) are normalized and non-negative, and each P(n)

is a marginal of all higher-order probability distributions:

P(n)(yn, tn; . . . ; y1, t1) =
∑
yn+m

· · ·
∑
yn+1

P(n+m)(yn+m, tn+m; . . . ; y1, t1) (10.3)

In fact, the probability measure P is uniquely determined by the hierarchy (10.1).3

Similarly, we may define conditional probabilities in the familiar manner, e.g.:

P(1|n−1)(yn, tn|yn−1, tn−1; . . . ; y1, t1) := P(n)(yn, tn; . . . ; y1, t1)

P(n−1)(yn−1, tn−1; . . . ; y1, t1)
(10.4)

provides the probability that Ytn attains the value yn, under the condition that
Ytn−1, . . . , Yt1 have the values yn−1, . . . , y1. In principle, the times appearing in the
joint and conditional probability distributions (10.1) and (10.4) may be chosen in
an arbitrary order. However, we adopt from now on the convention that they are
ordered as t1 < · · · < tn.

A special and important type of stochastic process is obtained by adding the
assumption that such conditional probabilities depend only the condition at the last

3 At least, when we assume that the σ -algebra of measurable sets in X is the cylinder algebra generated by sets
of the form in the right-hand side of (10.2).
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instant. That is to say: for all n and all choices of y1, . . . , yn and t1 < · · · < tn:

P(1|n)(yn, tn|yn−1, tn−1; . . . ; yn, tn) = P(1|1)(yn, tn|yn−1, tn−1) (10.5)

This is the Markov property and such stochastic processes are called Markov
processes.

The interpretation often given to this assumption, is that Markov processes
have ‘no memory’. To explain this slogan more precisely, consider the following
situation. Suppose we are given a piece of the history of the quantity Y: at the
instants t1, . . . , tn−1 its values have been y1, . . . , yn−1. On this information, we
want to make a prediction of the value yn of the variable Y at a later instant tn.
The Markov-property (10.5) says that this prediction would not have been better
or worse if, instead of knowing this entire piece of prehistory, only the value yn−1

of Y at the last instant tn−1 had been given. Additional information about the past
values is thus irrelevant for a prediction of the future value.

For a Markov process, the hierarchy of joint probability distributions (10.1) is
subjected to stringent demands. In fact they are all completely determined by: (a)
the specification of P(1)(y, 0) at one arbitrary chosen initial instant t = 0, and (b)
the conditional probabilities P(1|1)(y2, t2|y1, t1) for all t2 > t1. Indeed,

P(1)(y, t) =
∑
y0

P(1|1)(y, t |y0, 0)P(1)(y0, 0) (10.6)

and for the joint probability distributions P(n) we find:

P(n)(yn, tn; . . . ; y1, t1) = P(1|1)(yn, tn|yn−1, tn−1) P(1|1)(yn−1, tn−1|yn−2, tn−2)

× · · · × P(1|1)(y2, t2|y1, t1)P(1)(y1, t1) (10.7)

It follows from the Markov property that the conditional probabilities P(1|1) have
the following property, known as the Chapman–Kolmogorov equation:

P(1|1)(y3, t3|y1, t1) =
∑
y2

P(1|1)(y3, t3|y2, t2)P(1|1)(y2, t2|y1, t1) for t1 < t2 < t3

(10.8)
So, for a Markov process, the hierarchy (10.1) is completely characterized by

specifying P(1) at an initial instant and a system of conditional probabilities P(1|1)

satisfying the Chapman–Kolmogorov equation. The study of Markov processes
therefore focuses on these two ingredients.4

4 Note, however, that although every Markov process is fully characterized by (i) an initial distribution P(1)(y, 0)
and (ii) a set of transition probabilities P(1|1) obeying the Chapman–Kolmogorov equation and the equations
(10.7), it is not the case that every stochastic process obeying (i) and (ii) is a Markov process. (See van Kampen
1981: 83 for a counterexample.) Still, it is true that one can define a unique Markov process from these two
ingredients by stipulating (10.7).
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A Markov process is called homogeneous if the conditional probabilities
P(1|1)(y2, t2|y1, t1) do not depend on the two times t1, t2 separately but only on
their difference t = t2 − t1; i.e. if they are invariant under time translations. In this
case we may write

P(1|1)(y2, t2|y1, t1) = Tt (y2, y1) (10.9)

such conditional probabilities are also called transition probabilities.
Is the definition of a Markov process time-symmetric? The choice in (10.5) of

conditionalizing the probability distribution for Ytn on earlier values of Yt is of
course special. In principle, there is nothing in the formulas (10.1) or (10.4) that
forces such an ordering. One might, just as well, ask for the probability of a value
of Yt in the past, under the condition that part of the later behaviour is given (or,
indeed, conditionalize on the behaviour at both earlier and later instants.)

At first sight, the Markov property makes no demands about these latter
cases. Therefore, one might easily get the impression that the definition is time-
asymmetric. However, this is not the case. One can show that (10.5) is equivalent
to:

P(1|n−1)(y1, t1|y2, t2; . . . ; yn, tn) = P(1|1)(y1t1|y2, t2) (10.10)

where the convention t1 < t2 < · · · < tn is still in force. Thus, a Markov process
does not only have ‘no memory’ but also ‘no foresight’.

Some authors (e.g. Kelly, 1979) adopt an (equivalent) definition of a Markov
process that is explicitly time-symmetric: Suppose that the value yi at an instant ti
somewhere in the middle of the sequence t1 < · · · < tn is given. The condition for
a stochastic process to be Markov is then

P(n|1)(yn, tn; . . . ; y1, t1|yi, ti) =
P(n−i|1)(yn, tn; . . . ; yi+1, ti+1|yi, ti) P(i−1|1)(yi−1, ti−1; y1, t1|yi, ti) (10.11)

for all n = 1, 2, . . . and all 1 ≤ i ≤ n. In another slogan: The future and past are
independent if one conditionalizes on the present.

10.3 Stochastic dynamics

A homogeneous Markov process is for t > 0 completely determined by the specifi-
cation of an initial probability distribution P(1)(y, 0) and the transition probabilities
Tt (y2|y1) defined by (10.9). The difference in notation (between P and T) also
serves to ease a certain conceptual step. Namely, the idea is to regard Tt as a
stochastic evolution operator. Thus, we can regard Tt (y2|y1) as the elements of a
matrix, representing a (linear) operator T that determines how an initial distribution
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P(1)(y, 0) will evolve into a distribution at later instants t > 0. (In the sequel I will
adapt the notation and write P(1)(y, t) as Pt (y).)

Pt (y) = (TtP )(y) :=
∑
y ′

Tt (y|y ′)P0(y ′) (10.12)

The Chapman–Kolmogorov equation (10.8) may then be written compactly as

Tt+t ′ = Tt ◦ Tt ′ for t, t ′ ≥ 0 (10.13)

where ◦ stands for matrix multiplication, and we now also extend the notation to
include the unit operator:

1(y, y ′) = T0(y, y ′) := δy,y′ (10.14)

where δ denotes the Kronecker delta.
The formulation (10.3) can (almost) be interpreted as the group composition

property of the evolution operators T. It may be instructive to note how much this
is due to the Markov property. Indeed, for arbitrary conditional probabilities, say,
if Ai, Bj and Ck denote three families of complete and mutually exclusive events
the rule of total probability gives:

P (Ai|Ck) =
∑

j

P (Ai |Bj , Ck)P (Bj |Ck) (10.15)

In general, this rule can not be regarded as ordinary matrix multiplication or a group
composition! But the Markov property makes P (Ai|Bj, Ck) in (10.15) reduce to
P (Ai |Bj ), and then the summation in (10.15) coincides with the familiar rule for
matrix multiplication.

I wrote above: ‘almost’, because there is still a difference in comparison with the
normal group property: in the Chapman–Kolmogorov equation (10.13) all times
must be positive. Thus, in general, for t < 0, Tt may not even be defined and so it
does not hold that

T−t ◦ Tt = 1 (10.16)

A family of operators {Tt , t ≥ 0} which is closed under an operation ◦ that obeys
(10.13), and for which T0 = 1 is called a semigroup. It differs from a group in the
sense that its elements Tt need not be invertible, i.e. need not have an inverse. The
lack of an inverse of Tt may be due to various reasons: either Tt does not possess an
inverse, i.e. it is not a one-to-one mapping, or Tt does possess an inverse matrix T inv

t ,
which however is itself non-stochastic (e.g. it may have negative matrix-elements).
We will come back to the role of the inverse matrices in Sections 10.4 and 10.7.

The theory of Markov processes has a strong and natural connection with linear
algebra. Sometimes, the theory is presented entirely from this perspective, and one
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starts with the introduction of a semigroup of stochastic matrices, that is to say, m
by m matrices T with Tij ≥ 0 and

∑
i Tij = 1. Or, more abstractly, one posits a class

of states P, elements of a Banach space with a norm ‖P ‖1 = 1, and a semigroup
of stochastic maps Tt, (t ≥ 0), subject to the conditions that Tt is linear, positive,
and preserves norm: ‖TtP ‖1 = ‖P ‖1 (see Streater, 1995).

The evolution of a probability distribution P (now regarded as a vector or a state)
is then particularly simple when t is discrete (t ∈ N):

Pt = T tP0, where T t = T ◦ · · · ◦ T︸ ︷︷ ︸
t times

(10.17)

Homogeneous Markov processes in discrete time are also known as Markov chains.
Clearly, if we consider the family {Tt} as a semigroup of stochastic evolution

operators, or a stochastic form of dynamics, it becomes attractive to look upon
P0(y) as a contingent initial state, chosen independently of the evolution operators
Tt. Still, from the perspective of the probabilistic formalism with which we started,
this might be an unexpected thought: both P(1) and P(1|1) are aspects of a single,
given, probability measure P. The idea of regarding them as independent ingre-
dients that may be specified separately does not then seem very natural. But, of
course, there is no formal objection against the idea, since every combination of a
system of transition probabilities Tt obeying the Chapman–Kolmogorov equation,
and an arbitrary initial probability distribution P0(y) = P(1)(y, 0) defines a unique
homogeneous Markov process (cf. footnote 4). In fact, one sometimes even goes
one step further and identifies a homogeneous Markov process completely with
the specification of the transition probabilities, without regard of the initial state
P0(y); just like the dynamics of a deterministic system is usually presented without
assuming any special initial state.

For Markov chains, the goal of specifying the evolution of Pt (y) is now already
completely solved in Equation (10.17). In the case of continuous time, it is more
usual to specify evolution by means of a differential equation. Such an equation
may be obtained in a straightforward manner by considering a Taylor expansion of
the transition probability for small times (van Kampen, 1981: 101–103) – under an
appropriate continuity assumption.

The result (with a slightly changed notation) is:

∂Pt (y)

∂t
=

∑
y ′

(
W (y|y ′)Pt (y

′) − W (y ′|y)Pt (y)
)

(10.18)

Here, the expression W (y|y ′) is the transition probability from y′ to y per unit of
time. This differential equation, first obtained by Pauli in 1928, is called the master
equation.



Irreversibility in stochastic dynamics 189

The interpretation of the equation is suggestive: the change of the probability
Pt (y) is determined by making up a balance between gains and losses: the proba-
bility of value y increases in a time dt because of the transitions from y′ to y, for
all possible values of y ′. This increase per unit of time is

∑
y ′ W (y|y′)Pt (y ′). But

in same period dt there is also a decrease of Pt (y) as a consequence of transitions
from the value y to all other possible values y ′. This provides the second term.

In this ‘balancing’ aspect, the master equation resembles the Boltzmann equa-
tion, despite the totally different derivation, and the fact that Pt (y) has quite another
meaning than Boltzmann’s ft (v). (The former is a probability distribution, the latter
a distribution of particles.) Both are first-order differential equations in t. A crucial
mathematical distinction from the Boltzmann equation is that the master equation
is linear in P, and therefore much easier to solve.

Indeed, any solution of the master equation can formally be written as:

Pt = etLP0 (10.19)

where L represents the operator

L(y|y′) := W (y|y ′) −
∑
y ′′

W (y ′′|y ′)δy,y′ (10.20)

The general solution (10.19) is similar to the discrete time case (10.17), thus
showing the equivalence of the master equation to the assumption of a homogeneous
Markov process in continuous time.

10.4 Approach to equilibrium and increase of entropy?

What can we say in general about the evolution of Pt (y) for a homogeneous
Markov process? An immediate result is this: the relative entropy is monotonically
non-decreasing. That is to say, if we define

H (P, Q) := −
∑
y∈Y

P (y) ln
P (y)

Q(y)
(10.21)

as the relative entropy of a probability distribution P relative to Q, then one can
show (see e.g. Moran, 1961; Mackey, 1992: 30):

H (Pt , Qt ) ≥ H (P, Q) (10.22)

where Pt = TtP , Qt = TtQ, and Tt are elements of the semigroup (10.17) or
(10.19). One can also show that in the case of a non-zero relative entropy increase
for at least some pair of probability distributions P and Q, the stochastic matrix Tt

must be non-invertible.
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The relative entropy H(P, Q) can, in some sense, be thought of as a measure
of how much P and Q ‘resemble’ each other.5 Indeed, it takes its maximum value
(i.e. 0) if and only if P = Q; it may become −∞ if P and Q have disjoint support
(i.e. when P (y)Q(y) = 0 for all y ∈ Y). Thus, the result (10.22) says that if the
stochastic process is non-invertible, pairs of distributions Pt and Qt will generally
become more and more alike as time goes by.

Hence it seems we have obtained a general weak aspect of ‘irreversible
behaviour’ in this framework. Of course, the above result does not yet imply that
the ‘absolute’ entropy H (P ) := − ∑

y P (y) ln P (y) of a probability distribution is
non-decreasing. But now assume that the process has a stationary distribution. In
other words, there is a probability distribution P ∗(y) such that

TtP
∗ = P ∗ (10.23)

The intention is, obviously, to regard such a distribution as a candidate for the
description of an equilibrium state. If there is such a stationary distribution P ∗, we
may apply the previous result and write:

H (P, P ∗) ≤ H (TtP, TtP
∗) = H (Pt , P

∗) (10.24)

In other words, as time goes by, the distribution TtP will then more and more
resemble the stationary distribution than does P. If the stationary distribution is
also uniform, i.e.:

P ∗(y) = 1

m
(10.25)

then not only the relative but also the absolute entropy H (P ) := − ∑
y P (y) ln P (y)

increases, because

H (P, P ∗) = H (P ) − ln m (10.26)

In order to get a satisfactory description of an ‘approach to equilibrium’ the
following questions remain:

(i) is there such a stationary distribution?
(ii) if so, is it unique?

(iii) does the monotonic behaviour of H (Pt ) imply that limt−→∞ Pt = P ∗?

Harder questions, which we postpone to the next Subsection 10.5, are:

(iv) how to motivate the assumptions needed in this approach or how to judge their
(in)compatibility with an underlying time deterministic dynamics; and

(v) how this behaviour is compatible with the time-symmetry of Markov processes.

5 Of course, this is an asymmetric sense of ‘resemblance’ because H (P,Q) 	= H (Q, P ).
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Ad (i)

A stationary distribution as defined by (10.23), can be seen as an eigenvector
of Tt with eigenvalue 1, or, in the light of (10.19), an eigenvector of L for the
eigenvalue 0. Note that T or L are not necessarily Hermitian (or, rather, since we
are dealing with real matrices, symmetric), so that the existence of eigenvectors is
not guaranteed by the spectral theorem. Further, even if an eigenvector with the
corresponding eigenvalue exists, it is not automatically suitable as a probability
distribution because its components might not be positive.

Still, it turns out that, due to a theorem of Perron (1907) and Frobenius (1909),
every stochastic matrix indeed has an eigenvector, with exclusively non-negative
components, and eigenvalue 1 (see e.g. Gantmacher, 1959). But if the set Y is
infinite or continuous this is not always true.

However, for continuous variables with a range that has finite measure, the
existence of a stationary distribution is guaranteed under the condition that the
probability density ρy is at all times bounded, i.e. ∃M ∈ R such that ∀t ρt ≤ M;
(see Mackey, 1992: 36).

Ad (ii)

The question whether stationary distributions will be unique is somewhat harder to
tackle. This problem exhibits an analogy to that of metric transitivity in the ergodic
problem.

In general, it is very well possible that the range Y of Y can be partitioned in two
disjoint regions, say A and B, with Y = A ∪ B, such that there are no transitions
from A to B or vice versa (or that such transitions occur with probability zero).
That is to say, the stochastic evolution Tt might have the property

Tt (Y ∈ A|Y ∈ B) = Tt (Y ∈ B|Y ∈ A) = 0 (10.27)

In other words, its matrix may (perhaps after a conventional relabelling of the
outcomes) be written in the form: (

TA 0
0 TB

)
(10.28)

The matrix is then called (completely) reducible. In this case, stationary distribu-
tions will generally not be unique: If P ∗

A is a stationary distribution with support
in the region A, and P ∗

B is a stationary distribution with support in B, then every
convex combination

αP ∗
A(y) + (1 − α)P ∗

B(y) with 0 ≤ α ≤ 1 (10.29)
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will be stationary too. In order to obtain a unique stationary distribution we will
thus have to assume an analogue of metric transitivity. That is to say: we should
demand that every partition of Y into disjoint sets A and B for which (10.27) holds
is ‘trivial’ in the sense that P (A) = 0 or P (B) = 0.

So, one may ask, is the stationary distribution P ∗ unique if and only if the
transition probabilities Tτ are not reducible? In the ergodic problem, the answer is
positive (at least if P ∗ is assumed to be absolutely continuous with respect to the
micro-canonical measure). But not in the present case!

This has to do with the phenomenon of so-called ‘transient states’, which has
no analogy in Hamiltonian dynamics. Let us look at an example to introduce this
concept. Consider a stochastic matrix of the form:

(
TA T ′

0 TB

)
(10.30)

where T ′ is a matrix with non-negative entries only. Then:

(
TA T ′

0 TB

) (
PA

0

)
=

(
TAPA

0

)
,

(
TA T ′

0 TB

)(
0

PB

)
=

(
T ′PB

TBPB

)
(10.31)

so that here transitions of the type a −→ b have probability zero, but transitions
of the type b −→ a occur with positive probability. (Here, a, b stand for arbitrary
elements of the subsets A and B.) It is clear that in such a case the region B will
eventually be ‘sucked empty’. That is to say: the total probability of being in region
B (i.e. ‖T tPB‖) will go exponentially to zero. The distributions with support in B
are called ‘transient’ and the set A is called ‘absorbing’ or a ‘trap’.

It is clear that these transient states will not play any role in the determination of
the stationary distribution, and that for this purpose they might be simply ignored.
Thus, in this example, the only stationary distributions are those with a support in
A. And there will be more than one of them if TA is reducible.

A matrix T that may be brought (by permutation of the rows and columns) in
the form (10.30), with TA reducible is called incompletely reducible (van Kampen,
1981: 108). Further, a stochastic matrix is called irreducible if it is neither com-
pletely or incompletely reducible. An alternative (equivalent) criterion is that all
states ‘communicate’ with each other, i.e. that for every pair of i, j ∈ Y there is
some time t such that Pt (j |i) > 0.

The Perron–Frobenius theorem guarantees that as long as T is irreducible, there
is a unique stationary distribution. Furthermore, one can then prove an analogue of
the ergodic theorem (Petersen, 1983: 52):
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Ergodic theorem for Markov processes: If the transition probability Tt is irre-
ducible, the time average of Pt converges to the unique stationary solution:

lim
τ→∞

1

τ

∫ τ

0
TtP (y) dt = P ∗(y) (10.32)

Ad (iii)

If there is a unique stationary distribution P ∗, will TtP converge to P ∗, for every
choice of P? Again, the answer is not necessarily affirmative. (Even if (10.32)
is valid!) For example, there are homogeneous and irreducible Markov chains
for which Pt can be divided into two pieces: Pt = Qt + Rt with the following
properties (Mackey, 1992: 71):

(1) Qt is a term with ‖Qt‖ −→ 0. This is a transient term.
(2) The remainder Rt is periodic, i.e. after some time τ the evolution repeats itself: Rt+τ =

Rτ .

These processes are called asymptotically periodic. They may very well occur in
conjunction with a unique stationary distribution P ∗, and show strict monotonic
increase of entropy, but still not converge to P ∗. In this case, the monotonic increase
of relative entropy H (Pt , P

∗) is entirely due to the transient term. For the periodic
piece Rt, the transition probabilities are permutation matrices, which, after τ repe-
titions, return to the unit operator. Further technical assumptions can be introduced
to block examples of this kind, and thus enforce a strict convergence towards the
unique stationary distribution, e.g. by imposing a condition of ‘exactness’ (Mackey,
1992). However, it would take us too far afield to discuss this in detail.

In conclusion, it seems that a weak aspect of ‘irreversible behaviour’, i.e. the
monotonic non-decrease of relative entropy is a general feature for all homoge-
neous Markov processes, (and indeed for all stochastic processes), and non-trivially
so when the transition probabilities are non-invertible. Stronger versions of that
behaviour, in the sense of affirmative answers to the questions (i), (ii) and (iii), can
be obtained too, but at the price of additional technical assumptions.

10.5 Motivations for the Markov property and objections against them

Ad (iv)

We now turn to the following problem: what is the motivation behind the assump-
tion of the Markov property? The answer, of course, is going to depend on the
interpretation of the formalism that one has in mind, and may be different in
the ‘coarse graining’ and the ‘open systems’ or interventionist approaches (cf.
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Section 10.1). I shall discuss the coarse-graining approach in the next section, and
then consider the similar problem for the interventionist point of view.

10.5.1 Coarse graining and the repeated randomness assumption

In the present point of view, one assumes that the system considered is really an
isolated Hamiltonian system, but the Markov property is supposedly obtained from
a partitioning of its phase space. But exactly how is that achieved?

One of the clearest and most outspoken presentations of this view is (van
Kampen, 1962). Assume the existence of some privileged partition of the
Hamiltonian phase space � – or of the energy hypersurface �E – into disjoint
cells: � = ω1 ∪ · · · ∪ ωm. Consider an arbitrary ensemble with probability density
ρ on this phase space. Its evolution can be represented by an operator

U∗
t ρ(x) := ρ(U−t x) (10.33)

where we use Ut to denote the Hamiltonian evolution operators. Let transition
probabilities between the cells of this partition be defined as

Tt (j |i) := P (xt ∈ ωj |x ∈ ωi) = P (Utx ∈ ωj |x ∈ ωi) =

∫
(U−t ωj )∩ωi

ρ(x) dx∫
ωi

ρ(x) dx

(10.34)
Obviously such transition probabilities will be homogeneous, due to the time-
translation invariance of the Hamiltonian evolution Ut. Further, let p̂0(i) := P (x ∈
ωi) = ∫

ωi
ρ(x) dx, i ∈ Y = {1, . . . , m}, be an arbitrary initial coarse-grained

probability distribution at time t = 0.
Using the coarse-graining map defined by:

CG : ρ(x) �→ CGρ(x) =
∑

i

ρ̂(i)1ωi
(x) (10.35)

where

ρ̂(i) :=
∫
ωi

ρ(x) dx∫
ωi

dx
(10.36)

one may also express the coarse-grained distribution at time t as

CGU ∗
t ρ(x) =

∑
j i

Tt (j |i)p̂0(i)
1

µ(ωj )
1ωj

(x) (10.37)
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where µ is the canonical measure on �, or the micro-canonical measure on �E .
This expression indicates that, as long as we are only interested in the coarse-
grained history, it suffices to know the transition probabilities (10.34) and the
initial coarse-grained distributions.

But in order to taste the fruits advertised in the previous sections, one needs to
show that the transition probabilities define a Markov process, i.e. that they obey
the Chapman–Kolmogorov equation (10.8),

Tt ′+t (k|i) = Tt ′(k|j )Tt (j |i) for all t, t ′ > 0 (10.38)

Applying (10.37) for times t, t ′ and t + t ′, it follows easily that the Chapman–
Kolmogorov equation is equivalent to

CGU ∗
t ′+t = CGU∗

t ′ CGU∗
t for all t, t ′ > 0 (10.39)

In other words, the coarse-grained probability distribution at time t + t ′ can be
obtained by first applying the Hamiltonian dynamical evolution during a time t,
then performing a coarse-graining operation, next applying the dynamical evolu-
tion during time t ′, and then coarse graining again. In comparison to the relation
U ∗

t ′+t = U ∗
t ′ U

∗
t , we see that the Chapman–Kolmogorov condition can be obtained

by demanding that it is allowed to apply a coarse graining, i.e. to reshuffle the phase
points within each cell at any intermediate stage of the evolution.

Of course, this coarse graining halfway during the evolution erases all infor-
mation about the past evolution apart from the label of the cell where the state is
located at that time; and this ties in nicely with the view of the Markov property as
having no memory (cf. the discussion in Section 10.2).

What is more, the repeated application of the coarse graining does lead to a
monotonic non-decrease of the Gibbs entropy: If, for simplicity, we divide a time
interval into m segments of duration τ , we have

ρmτ = CGU ∗
τ CGU ∗

τ · · · CGU ∗
τ︸ ︷︷ ︸

m times

ρ (10.40)

and, since σ (CGρ) ≥ σ (ρ) :

σ [ρmτ ] ≥ σ [ρ(m−1)τ ] ≥ . . . ≥ σ [ρτ ] ≥ σ [ρ0] (10.41)

But since the choice of τ is arbitrary, we may conclude that σ [ρt ] is monotonically
non-decreasing.

Thus, van Kampen argues, the ingredient to be added to the dynamical evolution
is that, at any stage of the evolution, one should apply a coarse graining of the
distribution. It is important to note that it is not sufficient to do that just once
at a single instant. At every stage of the evolution we need to coarse grain the
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distribution again and again. Van Kampen (1962: 193) calls this the repeated
randomness assumption.

What is the justification for this assumption? Van Kampen points out that it is
‘not unreasonable’ (van Kampen, 1962: 182), because of the brute fact of its suc-
cess in phenomenological physics. Thermodynamics and other phenomenological
descriptions of macroscopic systems (the diffusion equation, transport equations,
hydrodynamics, the Fokker–Planck equation, etc.) all characterize macroscopic
systems with a very small number of variables. This means that their state descrip-
tions are very coarse in comparison with the microscopic phase space. But their
evolution equations are autonomous and deterministic: the change of the macro-
scopic variables is given in terms of the instantaneous values of those very same
variables. The success of these equations shows, apparently, that the precise micro-
scopic state does not add any relevant information beyond this coarse description.
At the same time, van Kampen admits that the coarse-graining procedure is clearly
not always successful. It is not difficult to construct a partition of a phase space
into cells for which the Markov property fails completely.

Apparently, the choice of the cells must be ‘just right’ (van Kampen, 1962: 183).
But there is as yet no clear prescription how this is to be done. Van Kampen (1981:
80) argues that it is ‘the art of the physicist’ to find the right choice, an art in which
he or she succeeds in practice by a mixture of general principles and ingenuity,
but where no general guidelines can be provided. The justification of the repeated
randomness assumption is that it leads to the Markov property and from there
onwards to the master equation, providing a successful autonomous, deterministic
description of the evolution of the coarse-grained distribution.

It is worth noting that van Kampen thus qualifies the ‘usual’ point of view on
the choice of the cells; namely, that the cells are chosen in correspondence to our
finite observation capabilities. Observability of the macroscopic variables is not
sufficient for the success of the repeated randomness assumption. It is conceivable
(and occurs in practice) that a particular partition in terms of observable quantities
does not lead to a Markov process. In that case, the choice of observable variables
is simply inadequate and has to be extended with other (unobservable) quantities
until we (hopefully) obtain an exhaustive set, i.e. a set of variables for which the
evolution can be described autonomously. An example is the spin-echo experiment:
the (observable) total magnetization of the system does not provide a suitable
coarse-grained description. For further discussion of this theme, see: (Blatt, 1959;
Ridderbos and Redhead, 1998; Lavis, 2004; Balian, 2005).

Apart from the unsolved problem for which partition the repeated randomness
assumption is to be applied, other objections have been raised against the repeated
randomness assumption. Van Kampen actually gives us not much more than the
advice to accept the repeated randomness assumption bravely, not to be distracted
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by its dubious status, and firmly keep our eyes on its success. For authors as
Sklar (1993) this puts the problem on its head. They request a justification of
the assumption that would explain the success of the approach. (Indeed, even van
Kampen (1981: 80) describes this success as a ‘miraculous fact’!) Such a request,
of course, will not be satisfied by a justification that relies on its success. (But that
does not mean, in my opinion, that it is an invalid form of justification.)

Another point that seems repugnant to many authors, is that the repeated coarse-
graining operations appear to be added ‘by hand’, in deviation from the true
dynamical evolution provided by Ut. The increase of entropy and the approach to
equilibrium would thus apparently be a consequence of the fact that we shake up the
probability distribution repeatedly in order to wash away all information about the
past, while refusing a dynamical explanation for this procedure. Redhead (1995:
31) describes this procedure as ‘one of the most deceitful artifices I have ever come
across in theoretical physics’ (see also Blatt, 1959; Sklar, 1993; Callender, 1999,
for similar objections).

10.5.2 Interventionism or ‘open systems’

Another approach to stochastic dynamics is by reference to open systems. The idea
is here that the system is in continual interaction with the environment, and that
this is responsible for the approach to equilibrium.

Indeed, it cannot be denied that in concrete systems isolation is an unrealistic
idealization. The actual effect of interaction with the environment on the micro-
scopic evolution can be enormous. A proverbial example, going back to Borel
(1914), estimates the gravitational effect caused by displacing one gram of matter
on Sirius by one centimetre on the microscopic evolution of an earthly cylinder
of gas. Under normal conditions, the effect is so large, that, roughly and for a
typical molecule in the gas, it may be decisive for whether or not this molecule will
hit another given molecule after about 50 intermediary collisions. That is to say:
microscopic dynamical evolutions corresponding to the displaced and the undis-
placed matter on Sirius start to diverge considerably after a time of about 10−6 s.
In other words, the mechanical evolution of such a system is so extremely sensitive
for disturbances of the initial state that even the most minute changes in the state of
the environment can be responsible for large changes in the microscopic trajectory.
But we cannot control the state of environment. Is it possible to regard irreversible
behaviour as the result of such uncontrollable disturbances from outside?6

6 Note that the term ‘open system’ is employed here for a system in (weak) interaction with its environment.
This should be distinguished from the notion of ‘open system’ in other branches of physics where it denotes a
system that can exchange particles with its environment.
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Let (x, y) be the state of a total system, where, as before, x ∈ �(s) represents the
state of the object system and y ∈ �(e) that of the environment. We assume that the
total system is governed by a Hamiltonian of the form

Htot(x, y) = H(s) + H(e) + λHint(x, y) (10.42)

so that the probability density of the ensemble of total systems evolves as

ρt (x, y) = U ∗
t ρ0(x, y) = ρ (U−t (x, y)) (10.43)

i.e. a time-symmetric, deterministic and measure-preserving evolution.
At each time, we may define marginal distributions for both system and

environment:

ρ
(s)
t (x) =

∫
dy ρt (x, y) (10.44)

ρ
(e)
t (x) =

∫
dx ρt (x, y) (10.45)

We are, of course, mostly interested in the object system, i.e. in (10.44). Assume
further that at time t = 0 the total density factorizes:

ρ0(x, y) = ρ
(s)
0 (x)ρ(e)

0 (y) (10.46)

What can we say about the evolution of ρ
(s)
t (x)? Does it form a Markov process,

and does it show increase of entropy?
An immediate result (see e.g. Penrose and Percival, 1962) is this:

σ [ρ(s)
t ] + σ [ρ(e)

t ] ≥ σ [ρ(s)
0 ] + σ [ρ(e)

0 ] (10.47)

where σ denotes the Gibbs fine-grained entropy

σ [ρ] = −
∫

ρ(x) ln ρ(x) dx (10.48)

This result follows from the fact that σ [ρt ] is conserved and that the entropy
of a joint probability distribution is always smaller than or equal to the sum of
the entropies of their marginals; with equality if the joint distribution factorizes.
This gives a form of entropy change for the total system, but it is not sufficient to
conclude that the object system itself will evolve towards equilibrium, or even that
its entropy will be monotonically increasing. (Note that (10.47) holds for t ≤ 0
too.)

Actually, this is obviously not to be expected. There are interactions with an
environment that may lead the system away from equilibrium. We shall have
to make additional assumptions about the situation. A more or less usual set of
assumptions is:
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(a) The environment is very large (or even infinite); i.e. the dimension of �(e) is much
larger than that of �(s), and H(s) � H(e).

(b) The coupling between the system and the environment is weak, i.e. λ is very small.
(c) The environment is initially in thermal equilibrium, e.g. ρ(e)(y) is canonical:

ρ
(e)
0 = 1

Z(β)
e−βH (e)

(10.49)

(d) One considers time scales only that are long with respect to the relaxation times of
the environment, but short with respect to the Poincaré recurrence time of the total
system.

Even then, it is a major task to obtain a master equation for the evolution of the
marginal state (10.44) of the system, or to show that its evolution is generated by
a semigroup, which would guarantee that this forms a Markov process (under the
proviso of footnote 4). Many specific models have been studied in detail (cf. Spohn,
1980). General theorems were obtained (although mostly in a quantum mechanical
setting) by (Davies, 1974; 1976a; Gorini et al., 1976; Lindblad, 1976). But there is
a similarity to the earlier approach: it seems that, here too, an analogue of ‘repeated
randomness’ must be introduced (Mehra and Sudarshan, 1972; van Kampen, 1994;
Maes and Netočný, 2003).

At the risk of oversimplifying the results obtained in this analysis, I believe they
can be summarized as showing that, in the so-called ‘weak coupling’ limit, or some
similar limiting procedure, the time development of (10.44) can be modelled as

ρ
(s)
t (x) = Ttρ

(s)(x) t ≥ 0 (10.50)

where the operators Tt form a semigroup, while the environment remains in its
steady equilibrium state:

ρ
(e)
t (y) = ρ

(e)
0 (y) t ≥ 0 (10.51)

The establishment of these results would also allow one to infer, from (10.47), the
monotonic non-decrease of entropy of the system.

To assess these findings, it is convenient to define, for a fixed choice of ρ
(e)
0 the

following linear map on probability distributions of the total system:

T R : ρ(x, y) �→ T Rρ(x, y) =
∫

ρ(x, y) dy · ρ
(e)
0 (y) (10.52)

This map removes the correlation between the system and the environment, and
projects the marginal distribution of the environment back to its original equilibrium
form.
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Now, it is not difficult to see that the Chapman–Kolmogorov equation (which is
equivalent to the semigroup property) can be expressed as

T RU ∗
t+t ′ = T RU ∗

t ′T RU∗
t for all t, t ′ ≥ 0 (10.53)

which is analogous to (10.39).
There is thus a strong formal analogy between the coarse-graining and the

open-systems approaches. Indeed, the variables of the environment play a role
comparable to the internal coordinates of a cell in the coarse-graining approach.
The exact microscopic information about the past is here translated into the form of
correlations with the environment. This information is now removed by assuming
that at later times, effectively, the state may be replaced by a product of the form
(10.46), neglecting the back-action of the system on the environment. The mappings
CG andT R are both linear and idempotent mappings, that can be regarded as special
cases of the projection operator techniques of Nakajima and Zwanzig, which allows
for a more systematical and abstract elaboration, sometimes called subdynamics.

Some proponents of the open-systems approach, (e.g. Morrison, 1966; Redhead,
1995), argue that in contrast to the coarse-graining approach, the present procedure
is ‘objective’. Presumably, this means that there is supposed to be a fact of the matter
about whether the correlations are indeed ‘exported to the environment’. However,
the analogy between both approaches makes one suspect that any problem for
the coarse-graining approach is translated into an analogous problem of the open-
systems approach. Indeed, the problem of finding a privileged partition that we
discussed in the previous section is mirrored here by the question where one
should place the division between the ‘system’ and ‘environment’. There is no
doubt that in practical applications this choice is also arbitrary.

10.6 Can the Markov property explain irreversible behaviour?

Ad (v)

Finally, I turn to what may well be the most controversial and surprising issue: is
the Markov property, or the repeated randomness assumption offered to motivate
it, responsible for the derivation of time-reversal non-invariant results?

We have seen that every non-invertible homogeneous Markov process displays
‘irreversible behaviour’ in the sense that different initial probability distributions
will tend to become more alike in the course of time. Under certain technical
conditions, one can obtain stronger results, e.g. an approach to a unique equilibrium
state, monotonic non-decrease of absolute entropy, etc. All these results seem to
be clearly time-asymmetric. And yet we have also seen that the Markov property
is explicitly time-symmetric. How can these be reconciled?
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To start off, it may be noted that it has often been affirmed that the Markov prop-
erty is the key towards obtaining time-asymmetric results. For example, Penrose
writes:

. . . the behaviour of systems that are far from equilibrium is not symmetric under time
reversal: for example: heat always flows from a hotter to a colder body, never from a colder
to a hotter. If this behaviour could be derived from the symmetric laws of dynamics alone
there would, indeed, be a paradox; we must therefore acknowledge the fact that some
additional postulate, non-dynamical in character and asymmetric under time reversal must
be adjoined to the symmetric laws of dynamics before the theory can become rich enough
to explain non-equilibrium behaviour. In the present theory, this additional postulate is the
Markov postulate.

(Penrose, 1970: 41)

Many similar statements, e.g. that the repeated randomness assumption is ‘the
additional element by which statistical mechanics has to be supplemented in order to
obtain irreversible equations’ (van Kampen, 1962: 182), or that the non-invertibility
of a Markov process provides the origin of thermodynamic behaviour (Mackey,
1992) can be found in the works of advocates of this approach.

But how can this be, given that the Markov property is explicitly time-symmetric?
In order to probe this problem, consider another question. How does a given
probability distribution P (y, 0) evolve for negative times? So, starting again from
(10.6), let us now take t ≤ 0. We still have:

P (y, t) =
∑
y ′

P (y, t, |y′, 0)P (y ′, 0) (10.54)

These conditional probabilities P (y, t, |y′, 0) satisfy the ‘time-reversed’ Markov
property (10.10), that says that extra specification of later values is irrelevant for
the retrodiction of earlier values. As a consequence, we get for t ≤ t ′ ≤ t ′′, 0:

P (y, t |y′′, t ′′) =
∑
y ′

P (y, t |y ′, t ′)P (y ′, t ′|y ′′, t ′′) (10.55)

i.e. a time-reversed analogue of the Chapman–Kolmogorov equation.
We may thus also consider these conditional probabilities for negative times

as backward evolution operators. If we could assume their invariance under time
translation, i.e. that they depend only on the difference τ = t − t ′, we could write

Sτ (y|y ′) := P (y, t |y, t ′) with τ = t − t ′ ≤ 0 (10.56)

and obtain a second semigroup of operators Sτ , obeying

Sτ+τ ′ = Sτ ◦ Sτ ′τ, τ ′ ≤ 0 (10.57)

that generate stochastic evolutions towards the past.
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These backward conditional probabilities are connected to the forward condi-
tional probabilities by means of Bayes’ theorem:

P(1|1)(y, t |y ′, t ′) = P(1|1)(y′, t ′|y, t)P (y, t)

P (y′, t ′)
(10.58)

and if the process, as before, is homogeneous this becomes

P(1|1)(y, t |y ′, t ′) = T−τ (y ′|y)Pt (y)

Pt ′(y ′)
; τ = t − t ′ < 0 (10.59)

The matrix P(1|1)(y, t |y ′, t ′) always gives for t < t ′ the correct ‘inversion’ of Tt.
That is to say: ∑

y ′
P (y, t |y ′, t ′)(Tt ′−tPt )(y

′) = Pt (y) (10.60)

Note firstly that (10.59) is not the matrix-inverse of Tt! Indeed, the right-hand side
of (10.59) depends on Pt and Pt ′ as well as T. Even if the matrix-inverse T (inv) does
not exist, or is not a bona fide stochastic matrix, the evolution towards the past is
governed by the Bayesian inversion, i.e. by the transition probabilities (10.59).

Note also that if the forward transition probabilities are homogeneous, this is not
necessarily so for the backward transition probabilities. For example, if in (10.59)
one translates both t and t ′ by δ, one finds

P (y, t + δ|y′, t ′ + δ) = T−τ (y ′|y)P (y, t + δ)

P (y′, t ′ + δ)

Here, the right-hand side generally still depends on δ. In the special case that
the initial distribution is itself stationary, the backward transition probabilities are
homogeneous whenever the forward ones are. If P(y, t) is not stationary, we might
still reach the same conclusion, as long as the non-stationarity is restricted to those
elements y or y ′ of Y for which Tt (y|y′) = 0 for all t. Otherwise, the two notions
become logically independent.

This gives rise to an unexpected new problem. Usually, an assumption of
homogeneity (or time translation invariance) is seen as philosophically innocu-
ous, as compared to time-reversal invariance. But here we see that assuming time-
translation invariance for a system of forward transition probabilities is not equiv-
alent to assuming the same invariance for the backward transition probabilities. If
one believes that one of the two is obvious, how will one go about explaining the
failure of the other? And how would one explain the preference for which one of
the two is obvious, without falling into the ‘double standards’ accusation of the
kind raised by Price (1996)?

But what about entropy increase? We have seen before that for every non-
invertible Markov process the relative entropy of the distribution P with respect
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to the equilibrium distribution increases, and that the distribution evolves towards
equilibrium. (Homogeneity of the process is not needed for this conclusion.) But
the backward evolution operators form a Markov process too, for which exactly the
same holds. This seems paradoxical. If TtP0 = Pt , we also have Pt = S−tP0. The
entropy of Pt can hardly be both higher and lower than that of P0! An example may
clarify the resolution of this apparent problem: namely, the stationary solutions of
S are not the same as the stationary solutions of T!

Example Consider a Markov chain with Y = {1, 2} and let

T =
(

1
2

1
2

1
2

1
2

)
. (10.61)

Choose an initial distribution P0 = (α, 1 − α). After one step we already get: P1 =
T P0 = (

1
2 ,

1
2

)
which is also the (unique) stationary distribution P ∗. The backward

transition probabilities are given by Bayes’ theorem, and one finds easily:

S =
(

α α

1 − α 1 − α

)
(10.62)

The stationary distribution for this transition probability is P̃ ∗ = (α, 1 − α). That
is to say: for the forward evolution operator the transition(

α

1 − α

)
T−→

(
1
2
1
2

)
(10.63)

is one for which a non-stationary initial distribution evolves towards a stationary
one. The relative entropy increases: H (P0, P

∗) ≤ H (P1, P
∗). But for the backward

evolution, similarly: (
1
2
1
2

)
S−→

(
α

1 − α

)
(10.64)

represents an evolution from a non-stationary initial distribution to the stationary
distribution P̃ ∗ and, here too, relative entropy increases: H (P1, P̃

∗) ≤ H (P0, P̃
∗).

The illusion that non-invertible Markov processes possess a built-in time-
asymmetry is (at least partly) due to the habit of regarding Tτ as a fixed evolution
operator on an independently chosen distribution P0. Such a view is of course
very familiar in other problems in physics, where deterministic evolution operators
generally do form a group and may be used, at our heart’s desire, for positive and
negative times.
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Indeed, the fact that these operators in general have no inverse might seem to
reflect the idea that Markov processes have no memory and ‘lose information’
along the way and that is the cause of the irreversible behaviour, embodied in
the time-asymmetric master equation, increase of relative or absolute entropy or
approach to equilibrium. But actually, every Markov process has apart from a
system of forward, also a system of backward transition probabilities, that again
forms a semigroup (when they are homogeneous). If we had considered them as
given we would get all conclusions we obtained before, but now for negative times.

I conclude that irreversible behaviour is not built into the Markov property, or in
the non-invertibility of the transition probabilities (or in the repeated randomness
assumption,7 or in the master equation or in the semigroup property). Rather the
appearance of irreversible behaviour is due to the choice to rely on the forward tran-
sition probabilities, and not the backward. A similar conclusion has been reached
before by Edens (2001) in the context of proposals of Prigogine and his coworkers.
My main point here is that the same verdict also holds for more ‘mainstream’
approaches as coarse graining or open systems.

10.7 Reversibility of stochastic processes

In order not to end this chapter on a destructive note, let me emphasize that I do
not claim that the derivation of irreversible behaviour in stochastic dynamics is
impossible. Instead, the claim is that motivations for desirable properties of the
forward transition probabilities are not enough; one ought also show that these
properties are lacking for the backward transitions.

In order to set up the problem of irreversibility in this approach to non-
equilibrium statistical mechanics for a more systematic discussion, one first ought
to provide a reasonable definition for what it means for a stochastic process to
be (ir)reversible; a definition that would capture the intuitions behind its original
background in Hamiltonian statistical mechanics.

One general definition that seems to be common (cf. Kelly, 1979: 5) is to call a
stochastic process reversible iff, for all n and t1, . . . , tn and τ :

P(n)(y1, t1; . . . ; yn, tn) = P(n)(y1, τ − tn; . . . ; yn, τ − tn) (10.65)

See Grimmett and Stirzaker (1982: 219) for a similar definition restricted to Markov
processes. The immediate consequence of this definition is that a stochastic process

7 In recent work, van Kampen acknowledges that the repeated randomness assumption by itself does not lead to
irreversibility: ‘This repeated randomness assumption [ . . . ] breaks the time symmetry by explicitly postulating
the randomization at the beginning of the time interval �t . There is no logical justification for this assumption
other than that it is the only thing one can do and that it works. If one assumes randomness at the end of each �t

coefficients for diffusion, viscosity, etc. appear with the wrong sign; if one assumes randomness at the midpoint
no irreversibility appears’ (van Kampen 2002: 475, original emphasis).
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can only be reversible if the single-time probability P(1)(y, t) is stationary, i.e. in
statistical equilibrium. Indeed, this definition seems to make the whole problem
of reconciling irreversible behaviour with reversibility disappear. As Kelly (1979:
19) notes in a discussion of the Ehrenfest model: ‘there is no conflict between
reversibility and the phenomenon of increasing entropy – reversibility is a property
of the model in equilibrium and increasing entropy is a property of the approach to
equilibrium’.

But clearly, this view trivializes the problem, and therefore it is not the appropri-
ate definition for non-equilibrium statistical mechanics. Recall that the Ehrenfest
dog flea model (Section 10.2) was originally proposed in an attempt of showing
how a tendency of approaching equilibrium from an initial non-equilibrium dis-
tribution (e.g. a probability distribution that gives probability 1 to the state that
all fleas are located on the same dog) could be reconciled with a stochastic yet
time-symmetric dynamics.

If one wants to separate considerations about initial conditions from dynamical
considerations at all, one would like to provide a notion of (ir)reversibility that is
associated with the stochastic dynamics alone, independent of whether the initial
distribution is stationary.

It seems that an alternative definition which would fulfil this intuition is to say
that a stochastic process is reversible if, for all y and y ′ and t ′ > t ,

P(1|1)(y, t |y′, t ′) = P(1|1)(y, t ′|y′, t). (10.66)

In this case we cannot conclude that the process must be stationary, and indeed,
the Ehrenfest model would be an example of a reversible stochastic process. I
believe this definition captures the intuition that if at some time state y ′ obtains,
the conditional probability of the state one time-step earlier being y is equal to that
of the state one time-step later being y. A similar proposal has been advocated by
Bacciagaluppi (2007).

According to this proposal, the aim of finding the ‘origin’ of irreversible
behaviour or ‘time’s arrow’, etc. in stochastic dynamics must then lie in find-
ing and motivating conditions under which the forward transition probabilities are
different from the backwards transition probabilities, in the sense of a violation
of (10.66). Otherwise, irreversible behaviour would essentially be a consequence
of the assumptions about initial conditions, a result that would not be different in
principle from conclusions obtainable from Hamiltonian dynamics.
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Borel, Émile 197

Caamaño, M. C. 142
Callen, H. B. 142
Callender, Craig 4, 35, 56, 94, 101, 124, 182, 197
caloric theory 8, 142, 145
Carnap, Rudolf 83
Carnot, Nicolas 142, 153

Carnot principle 143, 146
Cassandro, M. 168, 173
causal handles 14, 26–28, 29
causal theory of properties 126–133
causation 2, 3, 14, 121, 126, 130

asymmetry of causation see asymmetry
backward causation 14, 202

central limit theorem 173
chance see probability
Chapman–Kolmogorov equation 185–188, 195, 200,

201
Chavanis, P. H. 51, 53
Choi, S. 122
Clapeyron, Benoı̂t 142, 153

Clapeyron’s law 155
Clark, Peter 95
Clausius, Rudolf J. 7, 139–157
coarse-graining 8, 23, 25, 61, 180, 194–205

208



Index 209

Corry, R. 130
cosmology 22, 25, 35, 40, 61

cosmological arrow of time see arrows of time
Cross, T. 122

Dabrowski, M. P. 65
Dauxois, T. 43
Davies, E. B. 181, 199
DeRoeck, W. 39, 52, 54
determinism 1–2, 16, 29, 77, 79, 95, 103, 122, 123,

126, 180
Laplacean determinism 122
quasi-determinism 18, 20, 21–22

Dorato, M. 131
Dunning-Davies, J. 44
dynamics 4, 93, 99

dynamical laws 6, 16, 18, 24, 40, 42, 92,
100

dynamical system 16
galactic dynamics, stellar dynamics 52–53
stochastic dynamics 8, 180–205

Eagle, E. 71
Earman, John 16, 22, 36, 42, 47, 95, 99, 101
Eddington, Arthur 59
Edens, B. 204
Ehrenfest, Paul and Tatiana 6, 95, 98, 101,

183
Ehrenfest dog flea model 183, 205

Einstein, Albert 35
Einstein equations 36, 62, 63, 66

electromagnetism 40
Elga, Adam 107
Elkana, Y. 142
Ellis, Brian 119, 125
emergence 7, 8, 59, 61, 142, 169, 171
empiricism 119
energy

conservation of energy in a Hamiltonian system
93

interaction energy 46
total energy 44, 49

Engel, E. 85
ensembles

equivalence and inequivalence of ensembles
178

entropy
Bekenstein entropy 36, 62
black hole entropy 42
Boltzmann entropy 4, 34–37, 38–39, 40, 42, 46, 47,

49, 52–56, 93–94, 115, 122
entropy of the universe 25, 62
Gibbs entropy 47, 54, 115, 182, 195, 198
increase of entropy 189–193
principle of maximum entropy 115
Shannon entropy 115
thermodynamic entropy 34, 171, 178
Tsallis entropy 47

equilibrium
approach to equilibrium 97, 113, 183, 189–193,

205

ergodicity 6, 42, 95, 99–100, 192
Esfeld, Michael 6, 130, 131, 132, 133
Exner, Franz 1

Fedele, J. B. 53
Fermat, Pierre de 73
Feynman, Richard 35
Field, H. H.
Fine, Kit 21
Fokker–Planck equation 53–54, 55, 196
Frank, T. 54
free will 122
Friedman–Robertson–Walker metric 36
Frigg, Roman 6, 39, 95, 123
Frisch, Mathias 3, 13, 19, 28
Frobenius, Ferdinand Georg 191

Gallavotti, Giovanni 175
Galton board 20–21, 28, 85
Gantmacher, F. R. 191
Garrido, P. L. 49
gases

ideal gas law 4, 59, 145, 149, 153, 154, 156
kinetic theory of gases 143

Gaussian distribution 167, 169, 171, 176
general relativity theory 2, 34, 36, 47, 62, 63

quantum general relativity 63
Ghirardi, G. 131
Gibbs, J. Willard 8, 38, 142, 159–160, 161, 162,

175
Gibbs entropy see entropy
Gibbsian thermodynamics 143

Goldenfeld, Nigel 170
Goldstein, Herbert 93
Goldstein, Sheldon 39, 49, 115
Gorini, V. 199
gravity 4, 34–56, 64

gravitational arrow of time see arrows of time
quantum gravity 4, 42, 59–67

Green, M. S. 53
Grimmet, G. R. 204
Gunderson, L. 122

Hamiltonian mechanics 109, 111, 112, 113, 204
Hamilton’s equations 38, 39, 43, 66, 93, 101, 181

Handfield, T. 126
Hawking effect 62
Hawking–Page measure 36
heat

Clausius’ mechanical theory of heat 143
heat death 60
heat differential 148
principle of the equivalence of heat and work 143,

151
Heggie, D. C. 43, 53
Heidelberger, M. 73, 83
Heil, John 119, 125
von Helmholtz, Hermann 143
Hertel, P. 46
Hitchcock, Christopher 2, 101
Hoefer, Carl 95, 115



210 Index

Holland–Wald measure 36
Holton, R. 29, 30
Hopf, Eberhard 85
H-theorem 48, 49, 51–52, 53–54, 99, 181
Hume, David 120

Humean chance 102, 115
Humean metaphysics see metaphysics
Humean regularity view of causation 121
Humean supervenience 119, 121

Hut, P. 43, 53

indeterminism 80
induction 122
initial conditions 77, 80, 81, 82, 87, 110, 114, 122,

150, 205
initial conditions and boundary conditions 74

interventionism 181, 197–200
interventionist approach 193

irreversibility 60, 67
irreversibility in stochastic dynamics 180
irreversible processes in statistical mechanics 8
reversible and irreversible cycles 8, 154,

155–156
isothermal sphere 50

Jayne, Edwin Thompson 115
Jona-Lasinio, G. 168, 173
Joos, E. 61
Joule, James Prescott 143, 144

Kadanoff, Leo 168, 171
Kamenshchik, A. Y. 65
Kandrup, H. 52
Kelly, F. P. 186, 204, 205
Kelvin 143
Keynes, John Maynard 83
Khinchin, Alexander 114, 163, 167, 171
Kiefer, Claus 4, 62, 63, 65, 66, 67
kinetic equation 4, 51–52, 53–56
Kries, Johannes von 73, 80, 82, 83, 84, 87
Kronecker delta 187
Kuhn, Thomas S. 141, 142, 163

Ladyman, J. 130
Lakatos, Imre 141
Lam, V. 131
Landau, Lew Dawidowitsch 43, 44

Landau equation 53
Laplace, Pierre-Simon 73, 142

Laplacean determinism 122
Lavis, David 38, 94, 99, 196
Lavoisier, Antoine Laurent de 142
law of large numbers 71–72, 76–77
Lebesgue measure 38, 42, 47, 74, 76, 93, 105
Lebowitz, J. L. 49, 93
Levy-Leblond, J.-M. 46
Lewis, David 6, 23, 24, 95, 100, 102, 115, 119–121,

122, 123, 132
Liboff, R. L. 53
Lieb, E. H. 46
Lifshitz, E. 43, 44

Lindblad, G. 181, 199
Liouville’s theorem 15, 19, 39, 52, 54, 104, 182
Loewer, Barry 4, 6, 13–14, 16–18, 19, 20, 22,

23–24, 26, 28–30, 100–114, 115, 119, 124,
142

Lynden-Bell, D. 50

Mackey, M. C. 181, 182, 189, 191, 193, 201
Maes, C. 39, 199
magnetization 196
Malzkorn, W. 122
Markov process 8, 181–204
Marsden, Jerrold 93
Martin, Charles 119, 122, 125
master arrow of time see arrows of time
master equation 9, 61, 181–183, 188–189, 196–204
matter 25, 35, 44, 60
Maxwell, James Clerk 1, 48

Maxwell–Boltzmann probability distribution 42,
48, 51

Meacham, Christopher 115
Mehra, J. 180, 199
Mele, A. 122
metaphysics

Humean metaphysics 6, 119–124
metaphysics of powers 6, 119, 121, 124–128
metaphysics of structures
metaphysics of universals 119

von Mises, Richard 95
Moran, P. A. P. 189
Morrison, P. 200
Moulines, C. Ulises 7, 139, 141, 142, 143
µ-space 48, 49–50, 96, 183
Mumford, Stephen 119, 125, 126, 129, 130

Nagel, Ernest 7, 8, 160
Nauenberg, M. 47
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